Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/56441
Title: | Evaluation of a DNA-based method for spice/ herb authentication, so you do not have to worry about what is in your curry, buon appetito! |
Authors: | Maslin Osathanunkul Sarawut Ounjai Rossarin Osathanunkul Panagiotis Madesis |
Authors: | Maslin Osathanunkul Sarawut Ounjai Rossarin Osathanunkul Panagiotis Madesis |
Keywords: | Agricultural and Biological Sciences;Biochemistry, Genetics and Molecular Biology |
Issue Date: | 1-Oct-2017 |
Abstract: | © 2017 Osathanunkul et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. It is long believed that some spices may help protect against certain chronic conditions. Spices are usually parts of plants that have been powdered into small pieces. Have you ever wondered what the curry powder in your dish is made of? The aim of this work was to develop an appropriate DNA-based method for assessment of spice identity. Selecting the best marker for species recognition in the Zingiberaceae family. Six DNA regions were investigated in silico, including ITS, matK, rbcL, rpoC, trnH-psbA and trnL. Then, only four regions (ITS, matK, rbcL and trnH-psbA) were included in the simulated HRM (High-resolution Melting) analysis as the results from previous analysis showed that rpoC and trnL may not be suitable to be used to identify Zingiberaceae species in HRM analysis based on both the percentage of nucleotide variation and GC content. Simulated HRM analysis was performed to test the feasibility of Bar-HRM. We found that ITS2 is the most effective region to be used for identification of the studied species and thus was used in laboratory HRM analysis. All seven tested Zingiberaceae plants were then able to be distinguished using the ITS2 primers in laboratory HRM. Most importantly the melting curves gained from fresh and dried tissue overlapped, which is a crucial outcome for the applicability of the analysis. The method could be used in an authentication test for dried products. In the authentication test, only one of seven store-sold Zingiberaceae products that were tested contained the species listed on their labels, while we found substitution/contamination of the tested purchased products in the rest. |
URI: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85031003913&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/56441 |
ISSN: | 19326203 |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.