Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/55983
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Morrakot Khebchareon | en_US |
dc.contributor.author | Amiya Kumar Pani | en_US |
dc.contributor.author | Graeme Fairweather | en_US |
dc.date.accessioned | 2018-09-05T03:07:03Z | - |
dc.date.available | 2018-09-05T03:07:03Z | - |
dc.date.issued | 2016-01-01 | en_US |
dc.identifier.issn | 17055105 | en_US |
dc.identifier.other | 2-s2.0-84945892780 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84945892780&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/55983 | - |
dc.description.abstract | © 2016 Institute for Scientific Computing and Information. The Crank-Nicolson (CN) orthogonal spline collocation method and its alternating direction implicit (ADI) counterpart are considered for the approximate solution of a class of linear parabolic problems in two space variables. It is proved that both methods are second order accurate in time and of optimal order in certain Hj norms in space. Also, L∞ estimates in space are derived. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Convergence analyses of crank-nicolson orthogonal spline collocation methods for linear parabolic problems in two space variables | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | International Journal of Numerical Analysis and Modeling | en_US |
article.volume | 13 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
article.stream.affiliations | Indian Institute of Technology, Bombay | en_US |
article.stream.affiliations | Mathematical Reviews | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.