Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/55936
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHung T. Nguyenen_US
dc.contributor.authorVladik Kreinovichen_US
dc.contributor.authorOlga Koshelevaen_US
dc.date.accessioned2018-09-05T03:06:04Z-
dc.date.available2018-09-05T03:06:04Z-
dc.date.issued2016-11-07en_US
dc.identifier.other2-s2.0-85006725079en_US
dc.identifier.other10.1109/FUZZ-IEEE.2016.7737749en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85006725079&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/55936-
dc.description.abstract© 2016 IEEE. In some cases, a membership function μ(x) represents an unknown number, but in many other cases, it represents an unknown crisp set. In this case, for each crisp set S, we can estimate the degree μ(S) to which this set S is the desired one. A natural question is: once we know the values μ(S) corresponding to all possible crisp sets S, can we reconstruct the original membership function In this paper, we show that the original membership function μ(x) can indeed be uniquely reconstructed from the values μ(S).en_US
dc.subjectMathematicsen_US
dc.titleMembership functions representing a number vs. representing a set: Proof of unique reconstructionen_US
dc.typeConference Proceedingen_US
article.title.sourcetitle2016 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2016en_US
article.stream.affiliationsNew Mexico State University Las Crucesen_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsUniversity of Texas at El Pasoen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.