Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/55922
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Manaschai Kunaseth | en_US |
dc.contributor.author | Tanabat Mudchimo | en_US |
dc.contributor.author | Supawadee Namuangruk | en_US |
dc.contributor.author | Nawee Kungwan | en_US |
dc.contributor.author | Vinich Promarak | en_US |
dc.contributor.author | Siriporn Jungsuttiwong | en_US |
dc.date.accessioned | 2018-09-05T03:04:59Z | - |
dc.date.available | 2018-09-05T03:04:59Z | - |
dc.date.issued | 2016-03-30 | en_US |
dc.identifier.issn | 01694332 | en_US |
dc.identifier.other | 2-s2.0-84960153876 | en_US |
dc.identifier.other | 10.1016/j.apsusc.2016.01.139 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84960153876&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/55922 | - |
dc.description.abstract | © 2016 Elsevier B.V. All rights reserved. In this study, we have investigated the size effects of palladium (Pd) doped single-vacancy defective graphene (SDG) surface to the adsorption of AsH3and its dehydrogenated products on Pd using density functional theory calculations. Here, Pd cluster binding study revealed that Pd6nanocluster bound strongest to the SDG surface, while adsorption of AsHx(x = 0-3) on the most stable Pdndoped SDG showed that dehydrogenated arsine compounds adsorbed onto the surface stronger than the pristine AsH3molecule. Charge analysis revealed that considerable amount of charge migration from Pd to dehydrogenated arsine molecules after adsorption may constitute strong adsorption for dehydrogenated arsine. In addition, study of thermodynamic pathways of AsH3dehydrogenation on Pdndoped SDG adsorbents indicated that Pd cluster doping on SDG adsorbent tends to be thermodynamically favorable for AsH3decomposition than the single-Pd atom doped SDG. Hence, our study has indicated that Pd6clusters doped SDG is more advantageous as adsorbent material for AsH3removal. | en_US |
dc.subject | Materials Science | en_US |
dc.title | A DFT study of arsine adsorption on palladium doped graphene: Effects of palladium cluster size | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Applied Surface Science | en_US |
article.volume | 367 | en_US |
article.stream.affiliations | Thailand National Science and Technology Development Agency | en_US |
article.stream.affiliations | Ubon Rajathanee University | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
article.stream.affiliations | Vidyasirimedhi Institute of Science and Technology | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.