Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/55838
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorBac T. Nguyenen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2018-09-05T03:02:07Z-
dc.date.available2018-09-05T03:02:07Z-
dc.date.issued2016-01-01en_US
dc.identifier.issn15635147en_US
dc.identifier.issn1024123Xen_US
dc.identifier.other2-s2.0-84962691328en_US
dc.identifier.other10.1155/2016/3965789en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84962691328&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/55838-
dc.description.abstract© 2016 Hai Q. Dinh et al. This paper overviews the study of skew Θ-constacyclic codes over finite fields and finite commutative chain rings. The structure of skew Θ-constacyclic codes and their duals are provided. Among other results, we also consider the Euclidean and Hermitian dual codes of skew Θ-cyclic and skew Θ-negacyclic codes over finite chain rings in general and over Fpm+uFpm in particular. Moreover, general decoding procedure for decoding skew BCH codes with designed distance and an algorithm for decoding skew BCH codes are discussed.en_US
dc.subjectEngineeringen_US
dc.subjectMathematicsen_US
dc.titleSkew Constacyclic Codes over Finite Fields and Finite Chain Ringsen_US
dc.typeJournalen_US
article.title.sourcetitleMathematical Problems in Engineeringen_US
article.volume2016en_US
article.stream.affiliationsKent State Universityen_US
article.stream.affiliationsMahidol Universityen_US
article.stream.affiliationsUniversity of Economics and Business Administrationen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.