Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/55605
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOrakanya Kanjanatarakulen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.contributor.authorThierry Denoeuxen_US
dc.date.accessioned2018-09-05T02:58:23Z-
dc.date.available2018-09-05T02:58:23Z-
dc.date.issued2016-01-01en_US
dc.identifier.issn16113349en_US
dc.identifier.issn03029743en_US
dc.identifier.other2-s2.0-84988629130en_US
dc.identifier.other10.1007/978-3-319-45559-4_11en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84988629130&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/55605-
dc.description.abstract© Springer International Publishing Switzerland 2016. In evidential clustering, the membership of objects to clusters is considered to be uncertain and is represented by mass functions, forming a credal partition. The EVCLUS algorithm constructs a credal partition in such a way that larger dissimilarities between objects correspond to higher degrees of conflict between the associated mass functions. In this paper, we propose to replace the gradient-based optimization procedure in the original EVCLUS algorithm by a much faster iterative rowwise quadratic programming method. We also show that EVCLUS can be provided with only a random sample of the dissimilarities, reducing the time and space complexity from quadratic to linear. These improvements make EVCLUS suitable to cluster large dissimilarity datasets.en_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleK-EVCLUS: Clustering large dissimilarity data in the belief function frameworken_US
dc.typeBook Seriesen_US
article.title.sourcetitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
article.volume9861 LNAIen_US
article.stream.affiliationsChiang Mai Rajabhat Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsUniversite de Technologie de Compiegneen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.