Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/55603
Title: | Invariance explains multiplicative and exponential skedactic functions |
Authors: | Vladik Kreinovich Olga Kosheleva Hung T. Nguyen Songsak Sriboonchitta |
Authors: | Vladik Kreinovich Olga Kosheleva Hung T. Nguyen Songsak Sriboonchitta |
Keywords: | Computer Science |
Issue Date: | 1-Jan-2016 |
Abstract: | © Springer International Publishing Switzerland 2016. In many situations, we have an (approximately) linear dependence between several quantities.(Formula presented.) The variance v=σ2of the corresponding approximation error (Formula presented.) often depends on the values of the quantities x1,…,xn: v= v(x1,…,xn); the function describing this dependence is known as the skedactic function. Empirically, two classes of skedactic functions are most successful: multiplicative functions (Formula presented.) and exponential functions (Formula presented.).In this paper, we use natural invariance ideas to provide a possible theoretical explanation for this empirical success; we explain why in some situations multiplicative skedactic functions work better and in some exponential ones. We also come up with a general class of invariant skedactic function that includes both multiplicative and exponential functions as particular cases. |
URI: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84952684545&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/55603 |
ISSN: | 1860949X |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.