Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/55524
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOrakanya Kanjanatarakulen_US
dc.contributor.authorThierry Denœuxen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2018-09-05T02:57:33Z-
dc.date.available2018-09-05T02:57:33Z-
dc.date.issued2016-05-01en_US
dc.identifier.issn0888613Xen_US
dc.identifier.other2-s2.0-84962822288en_US
dc.identifier.other10.1016/j.ijar.2015.12.004en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84962822288&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/55524-
dc.description.abstract© 2015 Elsevier Inc. All rights reserved. We study a new approach to statistical prediction in the Dempster-Shafer framework. Given a parametric model, the random variable to be predicted is expressed as a function of the parameter and a pivotal random variable. A consonant belief function in the parameter space is constructed from the likelihood function, and combined with the pivotal distribution to yield a predictive belief function that quantifies the uncertainty about the future data. The method boils down to Bayesian prediction when a probabilistic prior is available. The asymptotic consistency of the method is established in the iid case, under some assumptions. The predictive belief function can be approximated to any desired accuracy using Monte Carlo simulation and nonlinear optimization. As an illustration, the method is applied to multiple linear regression.en_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titlePrediction of future observations using belief functions: A likelihood-based approachen_US
dc.typeJournalen_US
article.title.sourcetitleInternational Journal of Approximate Reasoningen_US
article.volume72en_US
article.stream.affiliationsChiang Mai Rajabhat Universityen_US
article.stream.affiliationsUniversite de Technologie de Compiegneen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.