Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/55490
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMarco Velosoen_US
dc.contributor.authorSanti Phithakkitnukoonen_US
dc.contributor.authorCarlos Bentoen_US
dc.contributor.authorPedro D'Oreyen_US
dc.date.accessioned2018-09-05T02:57:10Z-
dc.date.available2018-09-05T02:57:10Z-
dc.date.issued2016-12-22en_US
dc.identifier.other2-s2.0-85010076708en_US
dc.identifier.other10.1109/ITSC.2016.7795557en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85010076708&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/55490-
dc.description.abstract© 2016 IEEE. Taxi is an important way of transportation. With the equipped location sensors, it becomes a probe sensing urban dynamics. In this work, we review and improve three approaches that use taxi data to explore the city dynamics of Lisbon, Portugal. We develop a naïve Bayesian classifier to estimate taxi demand; analyze the correlation between taxi volume and mobile phone activity; and compare ANN and linear regression models to estimate NO2 concentrations, using taxi activity information and meteorological conditions.en_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.titleMining taxi data for describing city in the context of mobility, sociality, and environment: Lessons learneden_US
dc.typeConference Proceedingen_US
article.title.sourcetitleIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSCen_US
article.stream.affiliationsUniversity of Coimbra, Centre for Informatics and Systemen_US
article.stream.affiliationsInstituto Politcnico de Coimbraen_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsUniversidade do Portoen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.