Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/55490
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Marco Veloso | en_US |
dc.contributor.author | Santi Phithakkitnukoon | en_US |
dc.contributor.author | Carlos Bento | en_US |
dc.contributor.author | Pedro D'Orey | en_US |
dc.date.accessioned | 2018-09-05T02:57:10Z | - |
dc.date.available | 2018-09-05T02:57:10Z | - |
dc.date.issued | 2016-12-22 | en_US |
dc.identifier.other | 2-s2.0-85010076708 | en_US |
dc.identifier.other | 10.1109/ITSC.2016.7795557 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85010076708&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/55490 | - |
dc.description.abstract | © 2016 IEEE. Taxi is an important way of transportation. With the equipped location sensors, it becomes a probe sensing urban dynamics. In this work, we review and improve three approaches that use taxi data to explore the city dynamics of Lisbon, Portugal. We develop a naïve Bayesian classifier to estimate taxi demand; analyze the correlation between taxi volume and mobile phone activity; and compare ANN and linear regression models to estimate NO2 concentrations, using taxi activity information and meteorological conditions. | en_US |
dc.subject | Computer Science | en_US |
dc.subject | Engineering | en_US |
dc.title | Mining taxi data for describing city in the context of mobility, sociality, and environment: Lessons learned | en_US |
dc.type | Conference Proceeding | en_US |
article.title.sourcetitle | IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC | en_US |
article.stream.affiliations | University of Coimbra, Centre for Informatics and System | en_US |
article.stream.affiliations | Instituto Politcnico de Coimbra | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
article.stream.affiliations | Universidade do Porto | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.