Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/54659
Full metadata record
DC FieldValueLanguage
dc.contributor.authorK. Nonlaoponen_US
dc.contributor.authorS. Orankitjaroenen_US
dc.contributor.authorA. Kananthaien_US
dc.date.accessioned2018-09-04T10:19:52Z-
dc.date.available2018-09-04T10:19:52Z-
dc.date.issued2015-01-01en_US
dc.identifier.issn14768291en_US
dc.identifier.issn10652469en_US
dc.identifier.other2-s2.0-84941207141en_US
dc.identifier.other10.1080/10652469.2015.1079906en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84941207141&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/54659-
dc.description.abstract© 2015 Taylor & Francis. In this paper, we propose the generalized solutions of the differential equation (Formula presented.) where m and n are any integers with (Formula presented.) , and (Formula presented.) using Laplace transform technique. We find that the types of Laplace transformable solutions in the space of right-sided distributions depend on the relationship between m and n. Precisely, we have a distributional solution provided (Formula presented.) , and a weak solution otherwise. Our work improves the result of Kananthai [The distribution solutions of ordinary differential equation with polynomial coefficients. Southeast Asian Bull Math. 2001;25:129–134].en_US
dc.subjectMathematicsen_US
dc.titleThe generalized solutions of a certain n order differential equations with polynomial coefficientsen_US
dc.typeJournalen_US
article.title.sourcetitleIntegral Transforms and Special Functionsen_US
article.volume26en_US
article.stream.affiliationsKhon Kaen Universityen_US
article.stream.affiliationsMahidol Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.