Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/54640
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSomlak Utudeeen_US
dc.contributor.authorMontri Maleewongen_US
dc.date.accessioned2018-09-04T10:19:07Z-
dc.date.available2018-09-04T10:19:07Z-
dc.date.issued2015-12-01en_US
dc.identifier.issn16871847en_US
dc.identifier.issn16871839en_US
dc.identifier.other2-s2.0-84928597604en_US
dc.identifier.other10.1186/s13662-015-0464-0en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84928597604&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/54640-
dc.description.abstract© 2015, Utudee and Maleewong; licensee Springer. This work presents a new approach to numerically solve the general linear two-point boundary value problems with Dirichlet boundary conditions. Multilevel bases from the anti-derivatives of the Daubechies wavelets are constructed in conjunction with the augmentation method. The accuracy of numerical solutions can be improved by increasing the number of basis levels, but the computational cost also increases drastically. The multilevel augmentation method can be applied to reduce the computational time by splitting the coefficient matrix into smaller submatrices. Then the unknown coefficients in the higher level can be solved separately. The convergent rate of this method is 2<sup>s</sup>, where 1≤s≤p+1, when the anti-derivatives of the Daubechies wavelets order p are applied. Some numerical examples are also presented to confirm our theoretical results.en_US
dc.subjectMathematicsen_US
dc.titleWavelet multilevel augmentation method for linear boundary value problemsen_US
dc.typeJournalen_US
article.title.sourcetitleAdvances in Difference Equationsen_US
article.volume2015en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsKasetsart Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.