Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/54413
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hung T. Nguyen | en_US |
dc.contributor.author | Vladik Kreinovich | en_US |
dc.contributor.author | Olga Kosheleva | en_US |
dc.contributor.author | Songsak Sriboonchitta | en_US |
dc.date.accessioned | 2018-09-04T10:13:07Z | - |
dc.date.available | 2018-09-04T10:13:07Z | - |
dc.date.issued | 2015-01-01 | en_US |
dc.identifier.issn | 03029743 | en_US |
dc.identifier.other | 2-s2.0-84951004094 | en_US |
dc.identifier.other | 10.1007/978-3-319-25135-6-14 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84951004094&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/54413 | - |
dc.description.abstract | © Springer International Publishing Switzerland 2015. Economic and financial processes are complex and highly nonlinear. However, somewhat surprisingly, linear models like ARMAX-GARCH often describe these processes reasonably well. In this paper, we provide a possible explanation for the empirical success of these models. | en_US |
dc.subject | Computer Science | en_US |
dc.subject | Mathematics | en_US |
dc.title | Why ARMAX-GARCH linear models successfully describe complex nonlinear phenomena: A possible explanation | en_US |
dc.type | Conference Proceeding | en_US |
article.title.sourcetitle | Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science) | en_US |
article.volume | 9376 | en_US |
article.stream.affiliations | New Mexico State University Las Cruces | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
article.stream.affiliations | University of Texas at El Paso | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.