Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/54411
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Qingsong Shan | en_US |
dc.contributor.author | Tanes Wongyang | en_US |
dc.contributor.author | Tonghui Wang | en_US |
dc.contributor.author | Santi Tasena | en_US |
dc.date.accessioned | 2018-09-04T10:13:06Z | - |
dc.date.available | 2018-09-04T10:13:06Z | - |
dc.date.issued | 2015-01-01 | en_US |
dc.identifier.issn | 0888613X | en_US |
dc.identifier.other | 2-s2.0-84941316557 | en_US |
dc.identifier.other | 10.1016/j.ijar.2015.04.005 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84941316557&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/54411 | - |
dc.description.abstract | © 2015 Elsevier Inc. Siburg and Stoimenov [12] gave a measure of mutual complete dependence of continuous variables which is different from Spearman's ρ and Kendall's τ. In this paper, a similar measure of mutual complete dependence is applied to discrete variables. Also two measures for functional relationships, which are not bijection, are investigated. For illustration of our main results, several examples are given. | en_US |
dc.subject | Computer Science | en_US |
dc.subject | Mathematics | en_US |
dc.title | A measure of mutual complete dependence in discrete variables through subcopula | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | International Journal of Approximate Reasoning | en_US |
article.volume | 65 | en_US |
article.stream.affiliations | Northwest A&F University | en_US |
article.stream.affiliations | New Mexico State University Las Cruces | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.