Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/54392
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJiechen Tangen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.contributor.authorXinyu Yuanen_US
dc.date.accessioned2018-09-04T10:12:49Z-
dc.date.available2018-09-04T10:12:49Z-
dc.date.issued2015-01-01en_US
dc.identifier.issn1860949Xen_US
dc.identifier.other2-s2.0-84919360820en_US
dc.identifier.other10.1007/978-3-319-13449-9_23en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84919360820&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/54392-
dc.description.abstract© Springer International Publishing Switzerland 2015. Modeling uncertainty is a key issue in forecasting. In the tourism area, forecasts are used by governments, airline companies and operators to design tourism policies and they should include a quantification of uncertainties. This paper proposed a new approach to forecast the tourism demand, which is time series models combined with belief functions. We used this method to predict the demand for China international tourism, with an explicit representation of forecast uncertainty. The monthly data of international tourist arrival cover the period from January 1991 to June 2013. The result show that time seriesmodels combined with belief functions is a computationally simple and effective method.en_US
dc.subjectComputer Scienceen_US
dc.titleForecasting inbound tourism demand to China using time series models and belief functionsen_US
dc.typeBook Seriesen_US
article.title.sourcetitleStudies in Computational Intelligenceen_US
article.volume583en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsYunnan Normal Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.