Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/54359
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKittawit Autchariyapanitkulen_US
dc.contributor.authorSomsak Chanaimen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2018-09-04T10:12:26Z-
dc.date.available2018-09-04T10:12:26Z-
dc.date.issued2015-01-01en_US
dc.identifier.issn1860949Xen_US
dc.identifier.other2-s2.0-84919344188en_US
dc.identifier.other10.1007/978-3-319-13449-9_16en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84919344188&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/54359-
dc.description.abstract© Springer International Publishing Switzerland 2015. We applied the method of quantile regression under asymmetric Laplace distribution to predicting stock returns. Specifically, we used thismethod in the Fama and French three-factor model for the five industry portfolios to estimate the beta coefficient, which measure risk in the portfolios management analysis at given levels of quantile. In many applications, we are concerned with the changing effects of the covariates on the outcome across the quantiles of the distribution. Inference in quantile regression can be proceeded by assigning an asymmetric Laplace distribution for the error term. Finally, we use the method to measures the volatility of a portfolio relative to the market, size and value premium. It should be noted that a complete study of quantile regression models with various error distributions is of great interests for applications.en_US
dc.subjectComputer Scienceen_US
dc.titleEvaluation of portfolio returns in fama-french model using quantile regression under asymmetric laplace distributionen_US
dc.typeBook Seriesen_US
article.title.sourcetitleStudies in Computational Intelligenceen_US
article.volume583en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.