Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/54356
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJakramate Bootkrajangen_US
dc.date.accessioned2018-09-04T10:12:21Z-
dc.date.available2018-09-04T10:12:21Z-
dc.date.issued2015-01-01en_US
dc.identifier.other2-s2.0-84961807046en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84961807046&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/54356-
dc.description.abstractLearning from labelled data is becoming more and more challenging due to inherent imperfection of training labels. In this paper, we propose a new, generalised label noise model which is able to withstand the negative effect of both random noise and a wide range of non-random label noises. Empirical studies using three real-world datasets with inherent annotation errors demonstrate that the proposed generalised label noise model improves, in terms of classification accuracy, over existing label noise modelling approaches.en_US
dc.subjectComputer Scienceen_US
dc.titleA generalised label noise model for classificationen_US
dc.typeConference Proceedingen_US
article.title.sourcetitle23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2015 - Proceedingsen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.