Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/53697
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVítor H. Fernandesen_US
dc.contributor.authorJintana Sanwongen_US
dc.date.accessioned2018-09-04T09:55:48Z-
dc.date.available2018-09-04T09:55:48Z-
dc.date.issued2014-01-01en_US
dc.identifier.issn10053867en_US
dc.identifier.other2-s2.0-84903307086en_US
dc.identifier.other10.1142/S1005386714000431en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84903307086&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/53697-
dc.description.abstractLet PT (X) be the semigroup of all partial transformations on X, T (X) and I(X) be the subsemigroups of PT (X) of all full transformations on X and of all injective partial transformations on X, respectively. Given a non-empty subset Y of X, let PT (X; Y ) = {α ∈ PT (X) : Xα ⊆ Y}, T (X; Y ) = PT (X; Y ) \ T (X) and I(X; Y ) = PT (X; Y ) \ I(X). In 2008, Sanwong and Sommanee described the largest regular subsemigroup and determined Green's relations of T (X; Y ). In this paper, we present analogous results for both PT (X; Y ) and I(X; Y ). For a finite set X with jXj - 3, the ranks of PT (X) = PT (X;X), T (X) = T (X;X) and I(X) = I(X;X) are well known to be 4, 3 and 3, respectively. In this paper, we also compute the ranks of PT (X; Y ), T (X; Y ) and I(X; Y ) for any proper non-empty subset Y of X. © 2014 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, and Suzhou University.en_US
dc.subjectMathematicsen_US
dc.titleOn the ranks of semigroups of transformations on a finite set with restricted rangeen_US
dc.typeJournalen_US
article.title.sourcetitleAlgebra Colloquiumen_US
article.volume21en_US
article.stream.affiliationsFaculdade de Ciencias e Tecnologia, New University of Lisbonen_US
article.stream.affiliationsFaculdade de Ciencias, Universidade de Lisboaen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.