Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/53679
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKritsada Sangkhananen_US
dc.contributor.authorJintana Sanwongen_US
dc.date.accessioned2018-09-04T09:55:15Z-
dc.date.available2018-09-04T09:55:15Z-
dc.date.issued2014-01-01en_US
dc.identifier.issn16860209en_US
dc.identifier.other2-s2.0-84896301309en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84896301309&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/53679-
dc.description.abstractLet V be any vector space and P(V) the set of all partial linear transformations defined on V, that is, all linear transformations α: S → T where S; T are subspaces of V. Then P(V) is a semigroup under composition. Let W be a subspace of V. We define PT(V;W) = {α ∈ P(V): Vα ⊆ W}. So PT(V,W) is a subsemigroup of P(V). In this paper, we present the largest regular subsemigroup and determine Green's relations on PT(V;W). Furthermore, we study the natural partial order ≤ on PT(V;W) in terms of domains and images and find elements of PT(V,W) which are compatible. © 2014 by the Mathematical Association of Thailand. All rights reserved.en_US
dc.subjectMathematicsen_US
dc.titleGreen's relations and partial orders on semigroups of partial linear transformations with restricted rangeen_US
dc.typeJournalen_US
article.title.sourcetitleThai Journal of Mathematicsen_US
article.volume12en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.