Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/53669
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Panuwat Keadnarmol | en_US |
dc.contributor.author | Thaned Rojsiraphisal | en_US |
dc.date.accessioned | 2018-09-04T09:55:08Z | - |
dc.date.available | 2018-09-04T09:55:08Z | - |
dc.date.issued | 2014-01-01 | en_US |
dc.identifier.issn | 16871847 | en_US |
dc.identifier.issn | 16871839 | en_US |
dc.identifier.other | 2-s2.0-84899503307 | en_US |
dc.identifier.other | 10.1186/1687-1847-2014-32 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84899503307&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/53669 | - |
dc.description.abstract | In this paper, an improved globally exponential stability criterion of a certain neutral delayed differential equation with time-varying of the form d dt [x(t) + px(t - τ (t))] = -ax(t) + b tanh x(t - Σ (t)) has been proposed in the form of linear matrix inequality. We first propose an upper bound of the solution in terms of an exponential function. Then we apply Lyapunov functions, a descriptor form, the Leibniz-Newton formula and radially unboundedness to formulate the sufficient criterion. To show the effectiveness of the proposed criterion, four numerical examples are presented. © 2014 Keadnarmol and Rojsiraphisal; licensee Springer. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Globally exponential stability of a certain neutral differential equation with time-varying delays | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Advances in Difference Equations | en_US |
article.volume | 2014 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.