Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/53669
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPanuwat Keadnarmolen_US
dc.contributor.authorThaned Rojsiraphisalen_US
dc.date.accessioned2018-09-04T09:55:08Z-
dc.date.available2018-09-04T09:55:08Z-
dc.date.issued2014-01-01en_US
dc.identifier.issn16871847en_US
dc.identifier.issn16871839en_US
dc.identifier.other2-s2.0-84899503307en_US
dc.identifier.other10.1186/1687-1847-2014-32en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84899503307&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/53669-
dc.description.abstractIn this paper, an improved globally exponential stability criterion of a certain neutral delayed differential equation with time-varying of the form d dt [x(t) + px(t - τ (t))] = -ax(t) + b tanh x(t - Σ (t)) has been proposed in the form of linear matrix inequality. We first propose an upper bound of the solution in terms of an exponential function. Then we apply Lyapunov functions, a descriptor form, the Leibniz-Newton formula and radially unboundedness to formulate the sufficient criterion. To show the effectiveness of the proposed criterion, four numerical examples are presented. © 2014 Keadnarmol and Rojsiraphisal; licensee Springer.en_US
dc.subjectMathematicsen_US
dc.titleGlobally exponential stability of a certain neutral differential equation with time-varying delaysen_US
dc.typeJournalen_US
article.title.sourcetitleAdvances in Difference Equationsen_US
article.volume2014en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.