Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/53491
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSittichain Pramchuen_US
dc.contributor.authorYongyut Laosiritawornen_US
dc.date.accessioned2018-09-04T09:50:20Z-
dc.date.available2018-09-04T09:50:20Z-
dc.date.issued2014-07-24en_US
dc.identifier.issn16078489en_US
dc.identifier.issn10584587en_US
dc.identifier.other2-s2.0-84901395472en_US
dc.identifier.other10.1080/10584587.2014.905408en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84901395472&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/53491-
dc.description.abstractIn this work, the thickness dependence of Fe3O4(111)/MgO thin films, were simulated using density-functional theory. From the results, even though the total DOS in bulk structure presents a half-metallic behavior, the DOS of all Fe3O4(111) films demonstrates that they are metallic. The specific magnetization as a function of film thickness is found to satisfy the inverse power law. Indeed, the noncompensation of spin moments is also observed to be the main majority effect in the enhancement of giant magnetization. Moreover, the high spin polarization value is discovered in the compensation models and tends to reach-80% with increasing the thickness. © 2014 Taylor & Francis Group, LLC.en_US
dc.subjectEngineeringen_US
dc.subjectMaterials Scienceen_US
dc.subjectPhysics and Astronomyen_US
dc.titleThickness dependence of Fe<inf>3</inf>O<inf>4</inf>/MgO thin film properties: Density functional theory investigationen_US
dc.typeJournalen_US
article.title.sourcetitleIntegrated Ferroelectricsen_US
article.volume155en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.