Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/53442
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOrakanya Kanjanatarakulen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.contributor.authorThierry Denœuxen_US
dc.date.accessioned2018-09-04T09:49:13Z-
dc.date.available2018-09-04T09:49:13Z-
dc.date.issued2014-01-01en_US
dc.identifier.issn0888613Xen_US
dc.identifier.other2-s2.0-84899915661en_US
dc.identifier.other10.1016/j.ijar.2014.01.005en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84899915661&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/53442-
dc.description.abstractA method is proposed to quantify uncertainty on statistical forecasts using the formalism of belief functions. The approach is based on two steps. In the estimation step, a belief function on the parameter space is constructed from the normalized likelihood given the observed data. In the prediction step, the variable Y to be forecasted is written as a function of the parameter θ and an auxiliary random variable Z with known distribution not depending on the parameter, a model initially proposed by Dempster for statistical inference. Propagating beliefs about θ and Z through this model yields a predictive belief function on Y. The method is demonstrated on the problem of forecasting innovation diffusion using the Bass model, yielding a belief function on the number of adopters of an innovation in some future time period, based on past adoption data. © 2014 Elsevier B.V. All rights reserved.en_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleForecasting using belief functions: An application to marketing econometricsen_US
dc.typeJournalen_US
article.title.sourcetitleInternational Journal of Approximate Reasoningen_US
article.volume55en_US
article.stream.affiliationsChiang Mai Rajabhat Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsUniversite de Technologie de Compiegneen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.