Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/53421
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPhawis Thammasornen_US
dc.contributor.authorKarn Patanukhomen_US
dc.contributor.authorRapeeporn Pimupen_US
dc.date.accessioned2018-09-04T09:48:57Z-
dc.date.available2018-09-04T09:48:57Z-
dc.date.issued2014-01-01en_US
dc.identifier.other2-s2.0-84904543396en_US
dc.identifier.other10.1109/JCSSE.2014.6841834en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84904543396&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/53421-
dc.description.abstractAn improvement in framework for unseen place categorization using scene text is proposed. Category score calculation using visual saliency weighting method is proposed to cope with problem of different importance of word locations on scene images. Additionally, a HOG feature extraction using sliding window is proposed to obtain better holistic word recognition on scene images. As the result, the proposed method outperforms PHOG baseline in unseen place categorization with greater than 10 % improvement in the accuracy. © 2014 IEEE.en_US
dc.subjectComputer Scienceen_US
dc.titleSaliency-weighted holistic scene text recognition for unseen place categorizationen_US
dc.typeConference Proceedingen_US
article.title.sourcetitle2014 11th Int. Joint Conf. on Computer Science and Software Engineering: "Human Factors in Computer Science and Software Engineering" - e-Science and High Performance Computing: eHPC, JCSSE 2014en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsTokyo Institute of Technologyen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.