Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/52988
Full metadata record
DC FieldValueLanguage
dc.contributor.authorD. Bootkulen_US
dc.contributor.authorS. Intarasirien_US
dc.contributor.authorC. Aramwiten_US
dc.contributor.authorU. Tippawanen_US
dc.contributor.authorL. D. Yuen_US
dc.date.accessioned2018-09-04T09:37:23Z-
dc.date.available2018-09-04T09:37:23Z-
dc.date.issued2013-01-01en_US
dc.identifier.issn0168583Xen_US
dc.identifier.other2-s2.0-84885191214en_US
dc.identifier.other10.1016/j.nimb.2013.02.037en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84885191214&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/52988-
dc.description.abstractDiamond-like carbon (DLC) films deposited on SiO2/Si substrate are attractive for novel sensitive and selective chemical sensors. According to the almost never ending of size reduction, a nm-thickness layer of the film is greatly required. However, formation of such a very thin DLC film on SiO2/Si substrate is challenging. In this experiment, DLC films were formed using our in-house Filtered Cathodic Vacuum Arc Deposition (FCVAD) facility by varying the bias voltage of 0 V,-250 V and-450 V with the arc voltage of 350 V, 450 V, 550 V, 650 V and 750 V for 10 min. Raman spectroscopy was applied for characterization of the film qualities and Transmission Electron Microscopy (TEM) was applied for cross sectional analysis. Results showed that films of thickness ranging from 10-50 nm were easily acquired depending on deposition conditions. Deconvolution of Raman spectra of these samples revealed that, when fixing the substrate bias but increasing the arc voltage from 350 to 750 V, the ratio between D-peak and G-peak intensity, namely ID/IG ratio, tended to reduce up to the arc voltage of 450 V, then increased up to the arc voltage of 650 V and finally decreased again. On the other hand, when fixing the arc voltage, the ID/IG ratio tended to decrease continuously as the increasing of bias voltage. It can be concluded that the bonding structure would evolve from a graphitic-like structure to a diamond-like structure as the substrate bias increases. Additionally, the sp3 site should be maximized at the arc voltage-450 V for fixed bias voltage. It is expected that, at-450 V bias and 450 V arc, sp3 fractions could be higher than 60%. However, in some cases, e.g. at low arc voltages, voids formed between the film and the amorphous SiO2substrate. Electron energy loss spectroscopy (EELS) of the C edge across the DLC indicated that the thicker DLC film had uniform chemistry and structure, whereas the thin DLC film showed changes in the edge shape, indicating a gradual change in its properties between the edges and the core. © 2013 Elsevier B.V. All rights reserved.en_US
dc.subjectPhysics and Astronomyen_US
dc.titleFormation of thin DLC films on SiO<inf>2</inf>/Si substrate using FCVAD techniqueen_US
dc.typeJournalen_US
article.title.sourcetitleNuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atomsen_US
article.volume307en_US
article.stream.affiliationsSrinakharinwirot Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsCommission on Higher Educationen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.