Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/52754
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wattapong Puninagool | en_US |
dc.contributor.author | Sorasak Leeratanavalee | en_US |
dc.date.accessioned | 2018-09-04T09:31:36Z | - |
dc.date.available | 2018-09-04T09:31:36Z | - |
dc.date.issued | 2013-06-01 | en_US |
dc.identifier.issn | 17937183 | en_US |
dc.identifier.issn | 17935571 | en_US |
dc.identifier.other | 2-s2.0-84879055626 | en_US |
dc.identifier.other | 10.1142/S1793557113500162 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84879055626&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/52754 | - |
dc.description.abstract | The concept of generalized hypersubstitutions was introduced by S. Leeratanavalee and K. Denecke as a way of making precise the concepts of strong hyperidentity and M-strong hyperidentity. The set HypG(2) of all generalized hypersubstitutions of type τ = (2) forms a monoid. All idempotent and regular elements in the monoid of all generalized hypersubstitutions of type τ = (2) were studied by W. Puninagool and S. Leeratanavalee. In this paper, we determine all primitive idempotent elements of this monoid and characterize the natural partial ordering on the set of all idempotent of this monoid. © 2013 World Scientific Publishing Company. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Natural partial ordering on E(HypG(2)) | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Asian-European Journal of Mathematics | en_US |
article.volume | 6 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.