Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/52729
Full metadata record
DC FieldValueLanguage
dc.contributor.authorS. Udpinen_US
dc.contributor.authorP. Niamsupen_US
dc.date.accessioned2018-09-04T09:31:07Z-
dc.date.available2018-09-04T09:31:07Z-
dc.date.issued2013-12-01en_US
dc.identifier.issn1607887Xen_US
dc.identifier.issn10260226en_US
dc.identifier.other2-s2.0-84893654051en_US
dc.identifier.other10.1155/2013/325752en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84893654051&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/52729-
dc.description.abstractThis paper presents some global stability criteria of discrete-time neural networks with time-varying delays. Based on a discrete-type inequality, a new global stability condition for nonlinear difference equation is derived. We consider nonlinear discrete systems with time-varying delays and independence of delay time. Numerical examples are given to illustrate the effectiveness of our theoretical results. © 2013 S. Udpin and P. Niamsup.en_US
dc.subjectMathematicsen_US
dc.titleGlobal exponential stability of discrete-time neural networks with time-varying delaysen_US
dc.typeJournalen_US
article.title.sourcetitleDiscrete Dynamics in Nature and Societyen_US
article.volume2013en_US
article.stream.affiliationsKasetsart Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsSouth Carolina Commission on Higher Educationen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.