Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/52549
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJariya Rurgladdapanen_US
dc.contributor.authorKasemsak Uthaichanaen_US
dc.contributor.authorBoonsri Kaewkham-Aien_US
dc.date.accessioned2018-09-04T09:26:58Z-
dc.date.available2018-09-04T09:26:58Z-
dc.date.issued2013-08-19en_US
dc.identifier.other2-s2.0-84881449474en_US
dc.identifier.other10.1109/ICIEA.2013.6566415en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84881449474&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/52549-
dc.description.abstractThis investigation studies the effect of the number of Li-Ion battery modules on the fuel consumption and the 10-year operating cost for optimal powertrain design in a Proton Exchange Membrane fuel cell (PEMFC) hybrid vehicle. A 30kW PEMFC stack is in parallel with a number of 334Wh-LiFePO4 battery modules to deliver its energy to a 77 kW electric drive (ED). The ED output is connected to the gear box and the lower powertrain. For a given road/load mechanical power demand on the vehicle, the ED power profile can be computed. The electrical power-split strategy between the PEMFC and the battery pack plays a great role on the hydrogen fuel consumption and cost. The dynamic programming (DP) approach is adopted to compute the optimal power management strategy and to evaluate the vehicle performance and the average fuel consumption over five different standard driving profiles, i.e. Japan 10/15 mode, UN/ECE, UDDS, HWFET, and SFTP. The objective function to be minimized consists of the fuel cost and the Li-Ion battery cost. Since the Li-Ion battery is expensive, the battery's state of charge (SOC) operating range is limited to 0.5 and 0.7 to prolong the battery lifetime. From the simulation results, it is found that for average driving distance 10,000 km/year, the set of 5 battery modules is the most appropriate option. The set of 8 battery modules is best for average driving distance more than 50,000 km/y. © 2013 IEEE.en_US
dc.subjectEngineeringen_US
dc.titleOptimal Li-Ion battery sizing on PEMFC hybrid powertrain using dynamic programmingen_US
dc.typeConference Proceedingen_US
article.title.sourcetitleProceedings of the 2013 IEEE 8th Conference on Industrial Electronics and Applications, ICIEA 2013en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.