Please use this identifier to cite or link to this item:
Title: Atomic force microscopy adhesion mapping: Revealing assembly process in inorganic systems
Authors: Pichitchai Pimpang
Ahmad Sabirin Zoolfakar
Duangmanee Wongratanaphisan
Atcharawon Gardchareon
Emily P. Nguyen
Serge Zhuiykov
Supab Choopun
Kourosh Kalantar-Zadeh
Keywords: Chemistry
Materials Science
Issue Date: 3-Oct-2013
Abstract: There are still many unknowns regarding assembly processes. In this work, we demonstrate the capability of atomic force microscopy (AFM) adhesion mapping in revealing the conditions that promote the light-induced assembly of nanoparticles (NPs) on nanostructured surfaces in inorganic systems, both in macro- and nanodomains. Gold (Au) NPs and zinc oxide (ZnO) nanostructures are employed as the model materials, and different characterization techniques are used for extracting the relationship between the materials' crystallinity, stoichiometry, and morphology as well as surface adhesion mapping information. The light-induced assembly of Au NPs is associated with the attraction forces between the opposite surface charges of the NPs and preferential ZnO sites, which can be identified by adhesion mapping. We show that the yield of Au nanoclusters assembled onto the ZnO surface depends on the crystallinity and stoichiometry of ZnO and is not due to the roughness of the surface. The presented experiments demonstrate that AFM adhesion mapping can be used as an invaluable tool for predicting the strength and directions of assembly processes. © 2013 American Chemical Society.
ISSN: 19327455
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.

Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.