Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/52357
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPanich Intraen_US
dc.contributor.authorJaan Salmen_US
dc.contributor.authorNakorn Tippayawongen_US
dc.date.accessioned2018-09-04T09:23:54Z-
dc.date.available2018-09-04T09:23:54Z-
dc.date.issued2013-03-01en_US
dc.identifier.issn15480046en_US
dc.identifier.issn02726351en_US
dc.identifier.other2-s2.0-84875289819en_US
dc.identifier.other10.1080/02726351.2012.672543en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84875289819&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/52357-
dc.description.abstractA long multi-channel electrical mobility analyzer (long MCEMA) has been developed and presented for classifying and measuring the size distribution of aerosol particles in the range of 10 to 1000 nm (Intra and Tippayawong, 2009, 2011). In the idealized model, when there are no molecular and no turbulent diffusion, the charged particles in the MCEMA move along precisely determined trajectories, and the apparatus gives the undistorted mobility spectrum. Here we neglect the effect of the finite width of aerosol inlet channel and of the finite width of the electrometer rings. Practically, however, molecular and turbulent diffusion randomly scatters the trajectories of the particles, giving a smoothed mobility spectrum. The degree of smoothing can be characterized by the resolution. The resolution of the MCEMA can be expressed by an analytical equation because molecular diffusion submits itself relatively well to a theoretical description. Because of the complexity of turbulent diffusion, simplifying assumptions were made for this work. The MCEMA resolution values were calculated based on expected turbulence parameter data. An increase in the inner electrode voltage resulted in an increase in the resolution of the mobility spectrometer. Higher electrometer ring numbers were found to have higher resolution values of the long MCEMA than the lower electrometer ring numbers. The resolution Rdfor the electrometer ring number 22 was found to be as high as 150, 280, and 550 for inner electrode voltages of 1, 2, and 3 kV, respectively. The influence of Brownian diffusion on the resolution of the long MCEMA was significant for particles smaller than 100 nm, corresponding to electrometer ring numbers lower than 10. Approximate calculations show that the mobility resolution decreased considerably even with low turbulence in the classifier. © 2013 Copyright Taylor and Francis Group, LLC.en_US
dc.subjectChemical Engineeringen_US
dc.titleInfluence of diffusion on the resolution of a multi-channel electrical mobility analyzeren_US
dc.typeJournalen_US
article.title.sourcetitleParticulate Science and Technologyen_US
article.volume31en_US
article.stream.affiliationsRajamangala University of Technology Lannaen_US
article.stream.affiliationsInstitute of Physics, University of Tartuen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.