Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/52210
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Narin Lawan | en_US |
dc.contributor.author | Sairoong Muangpil | en_US |
dc.contributor.author | Nawee Kungwan | en_US |
dc.contributor.author | Puttinan Meepowpan | en_US |
dc.contributor.author | Vannajan Sanghiran Lee | en_US |
dc.contributor.author | Winita Punyodom | en_US |
dc.date.accessioned | 2018-09-04T09:22:10Z | - |
dc.date.available | 2018-09-04T09:22:10Z | - |
dc.date.issued | 2013-09-05 | en_US |
dc.identifier.issn | 2210271X | en_US |
dc.identifier.other | 2-s2.0-84882986421 | en_US |
dc.identifier.other | 10.1016/j.comptc.2013.07.045 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84882986421&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/52210 | - |
dc.description.abstract | The ring-opening polymerization (ROP) mechanism of d-lactide using tin (IV) alkoxides, (CH3(CH2)3)3SnOR, as initiators was theoretically studied. The high level adiabatic mapping B3LYP/LANL2DZ calculations were performed. This work evaluates role of the tin (IV) alkoxide initiators and gives molecular detail of the polymerization mechanism. In order to investigate the effects of the substituent (R) group of initiator on the ROP reaction rate, the R group was modeled to be linear R groups; -CH2CH3, -(CH2)3CH3, -(CH2)5CH3, -(CH2)7CH3, -(CH2)9CH3and branch R groups; -CH2CH3, -CH2CH(CH3)2, -C(CH3)3. The calculations show that the rate limiting step of the ROP reaction mechanism is the first transition state (TS1) of the reaction which corresponds to the steric effect of the initiators. For the initiators with a linear R group, the steric effect on the potential energy barrier of the TS1 is not significant whereas the initiators with branch R groups relatively increase the potential energy barrier. However, the determined potential energies of the TS1 for most initiators studied in the work are in the same range (16.0-20.2kcal/mol). Therefore, all the initiators except (CH3(CH2)3)3SnOC(CH3)3are suitable for the ROP of the d-lactide. © 2013 Elsevier B.V. | en_US |
dc.subject | Biochemistry, Genetics and Molecular Biology | en_US |
dc.subject | Chemistry | en_US |
dc.subject | Physics and Astronomy | en_US |
dc.title | Tin (IV) alkoxide initiator design for poly (d-lactide) synthesis using DFT calculations | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Computational and Theoretical Chemistry | en_US |
article.volume | 1020 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
article.stream.affiliations | Maejo University | en_US |
article.stream.affiliations | University of Malaya | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.