Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/51813
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWattapong Puninagoolen_US
dc.contributor.authorSorasak Leeratanavaleeen_US
dc.date.accessioned2018-09-04T06:09:33Z-
dc.date.available2018-09-04T06:09:33Z-
dc.date.issued2012-01-01en_US
dc.identifier.issn18440835en_US
dc.identifier.issn12241784en_US
dc.identifier.other2-s2.0-84861939567en_US
dc.identifier.other10.2478/v10309-012-0016-5en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84861939567&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/51813-
dc.description.abstractA generalized hypersubstitution of type τ = (2) is a mapping which maps the binary operation symbol f to a term σ(f) which does not necessarily preserve the arity. Any such τ can be inductively extended to a map σ on the set of all terms of type τ = (2), and any two such extensions can be composed in a natural way. Thus, the set HypG(2) of all generalized hypersubstitutions of type τ = (2) forms a monoid. Green's relations on the monoid of all hypersubstitutions of type τ = (2) were studied by K. Denecke and Sh.L. Wismath. In this paper we describe the classes of generalized hypersubstitutions of type τ = (2) under Green's relations.en_US
dc.subjectMathematicsen_US
dc.titleGreen's relations on HypG(2)en_US
dc.typeJournalen_US
article.title.sourcetitleAnalele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematicaen_US
article.volume20en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.