Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/51809
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Prasit Cholamjiak | en_US |
dc.contributor.author | Suthep Suantai | en_US |
dc.contributor.author | Yeol Je Cho | en_US |
dc.date.accessioned | 2018-09-04T06:09:31Z | - |
dc.date.available | 2018-09-04T06:09:31Z | - |
dc.date.issued | 2012-02-06 | en_US |
dc.identifier.issn | 16870042 | en_US |
dc.identifier.issn | 1110757X | en_US |
dc.identifier.other | 2-s2.0-84856475000 | en_US |
dc.identifier.other | 10.1155/2012/308791 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84856475000&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/51809 | - |
dc.description.abstract | We introduce a Halpern-type iteration for a generalized mixed equilibrium problem in uniformly smooth and uniformly convex Banach spaces. Strong convergence theorems are also established in this paper. As applications, we apply our main result to mixed equilibrium, generalized equilibrium, and mixed variational inequality problems in Banach spaces. Finally, examples and numerical results are also given. © 2012 Prasit Cholamjiak et al. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Strong convergence to solutions of generalized mixed equilibrium problems with applications | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Journal of Applied Mathematics | en_US |
article.volume | 2012 | en_US |
article.stream.affiliations | University of Phayao | en_US |
article.stream.affiliations | South Carolina Commission on Higher Education | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
article.stream.affiliations | Gyeongsang National University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.