Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/51806
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kamsing Nonlaopon | en_US |
dc.contributor.author | Apisit Lunnaree | en_US |
dc.contributor.author | Amnuay Kananthai | en_US |
dc.date.accessioned | 2018-09-04T06:09:26Z | - |
dc.date.available | 2018-09-04T06:09:26Z | - |
dc.date.issued | 2012-04-01 | en_US |
dc.identifier.issn | 09720871 | en_US |
dc.identifier.other | 2-s2.0-84859152229 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84859152229&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/51806 | - |
dc.description.abstract | In this article, we introduce the diamond Klein-Gordon operator iterated k times, which is defined by where p + q = n is the dimension of ℝ n, for all x = (x 1, x 2,..., x n) ∈ ℝ n, m ≥0 and non-negative integers k. Our aim is to study the fundamental solution of the operator (◇ + m 2) k, to which we will refer as the diamond Klein-Gordon kernel. Moreover, we will study the convolution of this kernel. © 2012 Pushpa Publishing House. | en_US |
dc.subject | Mathematics | en_US |
dc.title | On the solution of the n-dimensional diamond klein-gordon operator and its convolution | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Far East Journal of Mathematical Sciences | en_US |
article.volume | 63 | en_US |
article.stream.affiliations | Khon Kaen University | en_US |
article.stream.affiliations | South Carolina Commission on Higher Education | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.