Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/51806
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKamsing Nonlaoponen_US
dc.contributor.authorApisit Lunnareeen_US
dc.contributor.authorAmnuay Kananthaien_US
dc.date.accessioned2018-09-04T06:09:26Z-
dc.date.available2018-09-04T06:09:26Z-
dc.date.issued2012-04-01en_US
dc.identifier.issn09720871en_US
dc.identifier.other2-s2.0-84859152229en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84859152229&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/51806-
dc.description.abstractIn this article, we introduce the diamond Klein-Gordon operator iterated k times, which is defined by where p + q = n is the dimension of ℝ n, for all x = (x 1, x 2,..., x n) ∈ ℝ n, m ≥0 and non-negative integers k. Our aim is to study the fundamental solution of the operator (◇ + m 2) k, to which we will refer as the diamond Klein-Gordon kernel. Moreover, we will study the convolution of this kernel. © 2012 Pushpa Publishing House.en_US
dc.subjectMathematicsen_US
dc.titleOn the solution of the n-dimensional diamond klein-gordon operator and its convolutionen_US
dc.typeJournalen_US
article.title.sourcetitleFar East Journal of Mathematical Sciencesen_US
article.volume63en_US
article.stream.affiliationsKhon Kaen Universityen_US
article.stream.affiliationsSouth Carolina Commission on Higher Educationen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.