Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/51794
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKritsada Sangkhananen_US
dc.contributor.authorJintana Sanwongen_US
dc.date.accessioned2018-09-04T06:09:11Z-
dc.date.available2018-09-04T06:09:11Z-
dc.date.issued2012-08-01en_US
dc.identifier.issn17551633en_US
dc.identifier.issn00049727en_US
dc.identifier.other2-s2.0-84864870168en_US
dc.identifier.other10.1017/S0004972712000020en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84864870168&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/51794-
dc.description.abstractLet X be any set and P(X) the set of all partial transformations defined on X, that is, all functions α:A→B where A,B are subsets of X. Then P(X) is a semigroup under composition. Let Y be a subset of X. Recently, Fernandes and Sanwong defined PT(X,Y)={α P(X):XαY } and defined I(X,Y) to be the set of all injective transformations in PT(X,Y). Hence PT(X,Y) and I(X,Y) are subsemigroups of P(X). In this paper, we study properties of the so-called natural partial order ≥ on PT(X,Y) and I(X,Y) in terms of domains, images and kernels, compare ≥ with the subset order, characterise the meet and join of these two orders, then find elements of PT(X,Y) and I(X,Y) which are compatible. Also, the minimal and maximal elements are described. © 2012 Australian Mathematical Publishing Association Inc.en_US
dc.subjectMathematicsen_US
dc.titlePartial orders on semigroups of partial transformations with restricted rangeen_US
dc.typeJournalen_US
article.title.sourcetitleBulletin of the Australian Mathematical Societyen_US
article.volume86en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.