Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/51793
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kamonrat Nammanee | en_US |
dc.contributor.author | Suthep Suantai | en_US |
dc.contributor.author | Prasit Cholamjiak | en_US |
dc.date.accessioned | 2018-09-04T06:09:11Z | - |
dc.date.available | 2018-09-04T06:09:11Z | - |
dc.date.issued | 2012-08-17 | en_US |
dc.identifier.issn | 16870042 | en_US |
dc.identifier.issn | 1110757X | en_US |
dc.identifier.other | 2-s2.0-84864917715 | en_US |
dc.identifier.other | 10.1155/2012/804538 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84864917715&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/51793 | - |
dc.description.abstract | We introduce hybrid-iterative schemes for solving a system of the zero-finding problems of maximal monotone operators, the equilibrium problem, and the fixed point problem of weak relatively nonexpansive mappings. We then prove, in a uniformly smooth and uniformly convex Banach space, strong convergence theorems by using a shrinking projection method. We finally apply the obtained results to a system of convex minimization problems. Copyright © 2012 Kamonrat Nammanee et al. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Convergence theorems for maximal monotone operators, weak relatively nonexpansive mappings and equilibrium problems | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Journal of Applied Mathematics | en_US |
article.volume | 2012 | en_US |
article.stream.affiliations | University of Phayao | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
article.stream.affiliations | South Carolina Commission on Higher Education | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.