Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/51779
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKritsada Sangkhananen_US
dc.contributor.authorJintana Sanwongen_US
dc.date.accessioned2018-09-04T06:08:53Z-
dc.date.available2018-09-04T06:08:53Z-
dc.date.issued2012-11-19en_US
dc.identifier.issn13143395en_US
dc.identifier.issn13118080en_US
dc.identifier.other2-s2.0-84869017393en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84869017393&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/51779-
dc.description.abstractLet V be any vector space and I(V) the set of all partial injective linear transformations defined on V, that is, all injective linear transformations α: A → B where A, B are subspaces of V. Then I(V) is a semigroup under composition. Let W be a subspace of V. Define I(V, W)={α∈ I(V): V α ⊆ W}. So I(V,W) is a subsemigroup of I(V). In this paper, we present the largest regular subsemigroup of I(V, W) and determine its Green's relations. Furthermore, we study the natural partial order ≤ on I(V, W) in terms of domains and images, compare ≤ with the subset order and find elements of I(V, W) which are compatible. © 2012 Academic Publications, Ltd.en_US
dc.subjectMathematicsen_US
dc.titleSemigroups of injective partial linear transformations with restricted range: Green's relations and partial ordersen_US
dc.typeJournalen_US
article.title.sourcetitleInternational Journal of Pure and Applied Mathematicsen_US
article.volume80en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.