Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/50993
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | S. Niyom | en_US |
dc.contributor.author | A. Kananthai | en_US |
dc.date.accessioned | 2018-09-04T04:49:32Z | - |
dc.date.available | 2018-09-04T04:49:32Z | - |
dc.date.issued | 2010-06-29 | en_US |
dc.identifier.issn | 1312885X | en_US |
dc.identifier.other | 2-s2.0-77953900558 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77953900558&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/50993 | - |
dc.description.abstract | In this paper, we study the solution of nonlinear equation ΔkB(ΔB + m2)k u(x) = f(x,Δk-1B (ΔB + m2)ku(x)) where the operator ΔkB is the Bessel Laplace operator iterated k-times defined by ΔkB = (Bx1 + Bx2 + · · · + Bxn)k n is the dimension of the space R+n, x = (x1, x2,..., xn) E R+n, k is a positive integer, u(x) is an unknown and f is a given function. It is found that the existence of the solution u(x) of such equation depending on the condition of f and Δk-1B (ΔB+m2)ku(x). Moreover such solution u(x) related to the nonhomogeneous Bessel biharmonic equation depend on the conditions of k. | en_US |
dc.subject | Mathematics | en_US |
dc.title | The nonlinear product of the Bessel Laplace operator and the Bessel Helmholtz operator | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Applied Mathematical Sciences | en_US |
article.volume | 4 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.