Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/50993
Full metadata record
DC FieldValueLanguage
dc.contributor.authorS. Niyomen_US
dc.contributor.authorA. Kananthaien_US
dc.date.accessioned2018-09-04T04:49:32Z-
dc.date.available2018-09-04T04:49:32Z-
dc.date.issued2010-06-29en_US
dc.identifier.issn1312885Xen_US
dc.identifier.other2-s2.0-77953900558en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77953900558&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/50993-
dc.description.abstractIn this paper, we study the solution of nonlinear equation ΔkB(ΔB + m2)k u(x) = f(x,Δk-1B (ΔB + m2)ku(x)) where the operator ΔkB is the Bessel Laplace operator iterated k-times defined by ΔkB = (Bx1 + Bx2 + · · · + Bxn)k n is the dimension of the space R+n, x = (x1, x2,..., xn) E R+n, k is a positive integer, u(x) is an unknown and f is a given function. It is found that the existence of the solution u(x) of such equation depending on the condition of f and Δk-1B (ΔB+m2)ku(x). Moreover such solution u(x) related to the nonhomogeneous Bessel biharmonic equation depend on the conditions of k.en_US
dc.subjectMathematicsen_US
dc.titleThe nonlinear product of the Bessel Laplace operator and the Bessel Helmholtz operatoren_US
dc.typeJournalen_US
article.title.sourcetitleApplied Mathematical Sciencesen_US
article.volume4en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.