Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/50985
Full metadata record
DC FieldValueLanguage
dc.contributor.authorA. Kananthaien_US
dc.date.accessioned2018-09-04T04:49:20Z-
dc.date.available2018-09-04T04:49:20Z-
dc.date.issued2010-09-29en_US
dc.identifier.issn13128876en_US
dc.identifier.other2-s2.0-77956988284en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77956988284&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/50985-
dc.description.abstractIn this paper, we study the solution of the Diamond-wave operator L which is defined by where is the Diamond operator, x ∈ R{double-struck}n-the n dimensional Euclidean space, t ≥ 0, and p + q = n is the dimension of R{double-struck}n. By considering the equation Lu(x, t) = 0 with the suitable initial conditions. We obtained the unique solution u(x, t) of such equation. Moreover, we obtained the boundedness of u(x, t) subject to the suitable initial conditions. In particular, if we put n = 1, p = 1 and q = 0 we also obtained the solution of the beam equation.en_US
dc.subjectMathematicsen_US
dc.titleOn the diamond wave operatoren_US
dc.typeJournalen_US
article.title.sourcetitleInternational Journal of Mathematical Analysisen_US
article.volume4en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.