Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/50971
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSomboon Niyomen_US
dc.contributor.authorAmnuay Kananthaien_US
dc.date.accessioned2018-09-04T04:49:08Z-
dc.date.available2018-09-04T04:49:08Z-
dc.date.issued2010-12-13en_US
dc.identifier.issn13118080en_US
dc.identifier.other2-s2.0-78649863296en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=78649863296&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/50971-
dc.description.abstractIn this paper, we study the equation ∂/∂t u(x, t) = c2Bk u(x, t) with the initial condition u(x, 0) = f(x) for x ∈ ℝn+, where the operator Bk is defined by Bk = [(Bx1 + ⋯ B xp)3 + (Bxp+1 + ⋯ + B xp-q)3]k, p+q = n is the dimension of the space ℝ2+ = {x = (x1, x2,. . . xn) : x1 > 0, x2 > 0, . . . ,xn > 0}, Bx1 = ∂2/∂xi2 + 2v i/xi ∂/∂xi, 2vi = 2αi + 1, αi > -1/2, i = 1, 2,..., n, u(x, t) is an unknown function for (x, t) = [x1, x2,...,x n, t) ∈ ℝn+×(0, ∞), f(x) is a generalized function, k is a positive integer and c is a positive constant. We obtain the solution of such equation which is related to the spectrum and the heat kernel. Moreover, such Bessel heat kernel has interesting properties and also related to the kernel of an extension of the heat equation. © 2010 Academic Publications.en_US
dc.subjectMathematicsen_US
dc.titleOn the operator bk related to the bessel heat equationen_US
dc.typeJournalen_US
article.title.sourcetitleInternational Journal of Pure and Applied Mathematicsen_US
article.volume64en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.