Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/50815
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAmnuay Kananthaien_US
dc.contributor.authorWanchak Satsaniten_US
dc.date.accessioned2018-09-04T04:46:09Z-
dc.date.available2018-09-04T04:46:09Z-
dc.date.issued2010-05-26en_US
dc.identifier.issn15635147en_US
dc.identifier.issn1024123Xen_US
dc.identifier.other2-s2.0-77952508350en_US
dc.identifier.other10.1155/2010/482467en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77952508350&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/50815-
dc.description.abstractFirstly, we studied the solution of the equation ⊗k◇Bku (x) = f (x) where u (x) is an unknown unknown function for x = (x 1, x 2,⋯,xn) n, f (x) is the generalized function, k is a positive integer. Finally, we have studied the solution of the nonlinear equation ⊗k B ◇u(x) = f(x,k- 1LkΔBkBku (x)). It was found that the existence of the solution u (x) of such an equation depends on the condition of f andk-1LkΔBkBku(x). Moreover such solution u (x) is related to the inhomogeneous wave equation depending on the conditions of p, q, and k. Copyright © 2010 W. Satsanit and A. Kananthai.en_US
dc.subjectEngineeringen_US
dc.subjectMathematicsen_US
dc.titleOn the solution n -dimensional of the product k operator and diamond bessel operatoren_US
dc.typeJournalen_US
article.title.sourcetitleMathematical Problems in Engineeringen_US
article.volume2010en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.