Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/50734
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWattapong Puninagoolen_US
dc.contributor.authorSorasak Leeratanavaleeen_US
dc.date.accessioned2018-09-04T04:44:51Z-
dc.date.available2018-09-04T04:44:51Z-
dc.date.issued2010-01-01en_US
dc.identifier.issn08981221en_US
dc.identifier.other2-s2.0-72949120350en_US
dc.identifier.other10.1016/j.camwa.2009.06.033en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=72949120350&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/50734-
dc.description.abstractIn this paper, we consider the four useful measurements of the complexity of a term, called the maximum depth, the minimum depth, the variable count, and the operation count. We construct a formula for the complexity of the superposition Sm(s, t1, ..., tm) in terms of complexity of the inputs s, t1, ..., tmfor each of these measurements. We also obtain formulas for the complexity of over(σ, ̂) [t] in terms of the complexity where t is a compound term and σ is a generalized hypersubstitution. We apply these formulas to the theory of M-strongly solid varieties, examining the k-normalization chains of a variety with respect to these complexity measurements. Crown Copyright © 2009.en_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleComplexity of terms, superpositions, and generalized hypersubstitutionsen_US
dc.typeJournalen_US
article.title.sourcetitleComputers and Mathematics with Applicationsen_US
article.volume59en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.