Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/50713
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Watcharaporn Cholamjiak | en_US |
dc.contributor.author | Suthep Suantai | en_US |
dc.date.accessioned | 2018-09-04T04:44:38Z | - |
dc.date.available | 2018-09-04T04:44:38Z | - |
dc.date.issued | 2010-08-01 | en_US |
dc.identifier.issn | 1751570X | en_US |
dc.identifier.other | 2-s2.0-77955589557 | en_US |
dc.identifier.other | 10.1016/j.nahs.2009.12.003 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77955589557&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/50713 | - |
dc.description.abstract | In this paper, we prove a weak convergence theorem for the modified Mann iteration process for a uniformly Lipschitzian and asymptotically quasi-nonexpansive mapping in a uniformly convex Banach space. We also introduce two new kinds of monotone hybrid methods and obtain strong convergence theorems for an infinitely countable family of uniformly Lipschitzian and asymptotically quasi-nonexpansive mappings in a Hilbert space. The results of this paper improve on and extend corresponding ones announced by many authors. © 2009. | en_US |
dc.subject | Computer Science | en_US |
dc.subject | Engineering | en_US |
dc.subject | Mathematics | en_US |
dc.title | Convergence theorems from monotone hybrid methods for an infinitely countable family of Lipschitz asymptotically quasi-nonexpansive mappings | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Nonlinear Analysis: Hybrid Systems | en_US |
article.volume | 4 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
article.stream.affiliations | Mahidol University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.