Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/50713
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWatcharaporn Cholamjiaken_US
dc.contributor.authorSuthep Suantaien_US
dc.date.accessioned2018-09-04T04:44:38Z-
dc.date.available2018-09-04T04:44:38Z-
dc.date.issued2010-08-01en_US
dc.identifier.issn1751570Xen_US
dc.identifier.other2-s2.0-77955589557en_US
dc.identifier.other10.1016/j.nahs.2009.12.003en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77955589557&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/50713-
dc.description.abstractIn this paper, we prove a weak convergence theorem for the modified Mann iteration process for a uniformly Lipschitzian and asymptotically quasi-nonexpansive mapping in a uniformly convex Banach space. We also introduce two new kinds of monotone hybrid methods and obtain strong convergence theorems for an infinitely countable family of uniformly Lipschitzian and asymptotically quasi-nonexpansive mappings in a Hilbert space. The results of this paper improve on and extend corresponding ones announced by many authors. © 2009.en_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.subjectMathematicsen_US
dc.titleConvergence theorems from monotone hybrid methods for an infinitely countable family of Lipschitz asymptotically quasi-nonexpansive mappingsen_US
dc.typeJournalen_US
article.title.sourcetitleNonlinear Analysis: Hybrid Systemsen_US
article.volume4en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsMahidol Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.