Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/50690
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPrompong Sugunnasilen_US
dc.contributor.authorSamerkae Somhomen_US
dc.date.accessioned2018-09-04T04:44:24Z-
dc.date.available2018-09-04T04:44:24Z-
dc.date.issued2010-12-20en_US
dc.identifier.issn18650929en_US
dc.identifier.other2-s2.0-78650150569en_US
dc.identifier.other10.1007/978-3-642-16699-0_15en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=78650150569&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/50690-
dc.description.abstractWe propose a new methodology of feature selection for stock movement prediction. The methodology is based upon finding those features which minimize the correlation relation function. We first produce all the combination of feature and evaluate each of them by using our evaluate function. We search through the generated set with hill climbing approach. The self-organizing map based stock prediction model is utilized as the prediction method. We conduct the experiment on data sets of the Microsoft Corporation, General Electric Co. and Ford Motor Co. The results show that our feature selection method can improve the efficiency of the neural network based stock prediction. © 2010 Springer-Verlag.en_US
dc.subjectComputer Scienceen_US
dc.titleFeature selection for neural network based stock predictionen_US
dc.typeBook Seriesen_US
article.title.sourcetitleCommunications in Computer and Information Scienceen_US
article.volume114 CCISen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.