Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/50117
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kanit Mukdasai | en_US |
dc.contributor.author | Piyapong Niamsup | en_US |
dc.date.accessioned | 2018-09-04T04:24:33Z | - |
dc.date.available | 2018-09-04T04:24:33Z | - |
dc.date.issued | 2011-09-16 | en_US |
dc.identifier.issn | 16870409 | en_US |
dc.identifier.issn | 10853375 | en_US |
dc.identifier.other | 2-s2.0-80052655515 | en_US |
dc.identifier.other | 10.1155/2011/860506 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80052655515&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/50117 | - |
dc.description.abstract | We consider Lyapunov stability theory of linear time-varying system and derive sufficient conditions for uniform stability, uniform exponential stability, -uniform stability, and h-stability for linear time-varying system with nonlinear perturbation on time scales. We construct appropriate Lyapunov functions and derive several stability conditions. Numerical examples are presented to illustrate the effectiveness of the theoretical results. © 2011 Kanit Mukdasai and Piyapong Niamsup. | en_US |
dc.subject | Mathematics | en_US |
dc.title | An LMI approach to stability for linear time-varying system with nonlinear perturbation on time scales | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Abstract and Applied Analysis | en_US |
article.volume | 2011 | en_US |
article.stream.affiliations | Khon Kaen University | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
article.stream.affiliations | South Carolina Commission on Higher Education | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.