Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/50116
Title: | A generalization of Suzuki's lemma |
Authors: | B. Panyanak A. Cuntavepanit |
Authors: | B. Panyanak A. Cuntavepanit |
Keywords: | Mathematics |
Issue Date: | 16-Sep-2011 |
Abstract: | Let {zn}, {wn}, and {vn} be bounded sequences in a metric space of hyperbolic type (X, d), and let {αn} be a sequence in [0,1] with 0 < lim infnαn< lim supnαn< 1. If zn+1=αnwn(1-αn)vnfor all n ∈ ℕ , limnd (zn, vn) = 0, and lim supn(d (wn+1, wn) - d (zn+1, zn)) ≤ 0, then limnd (wn, zn) = 0. This is a generalization of Lemma 2.2 in (T. Suzuki, 2005). As a consequence, we obtain strong convergence theorems for the modified Halpern iterations of nonexpansive mappings in CAT(0) spaces. Copyright © 2011 B. Panyanak and A. Cuntavepanit. |
URI: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80052686272&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/50116 |
ISSN: | 16870409 10853375 |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.