Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/49983
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTawat Soitongen_US
dc.contributor.authorJantrawan Pumchusaken_US
dc.date.accessioned2018-09-04T04:21:15Z-
dc.date.available2018-09-04T04:21:15Z-
dc.date.issued2011-03-01en_US
dc.identifier.issn15734803en_US
dc.identifier.issn00222461en_US
dc.identifier.other2-s2.0-79958020062en_US
dc.identifier.other10.1007/s10853-010-4987-1en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79958020062&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/49983-
dc.description.abstractThis study aimed at the fabrication of lightweight and high performance nanocomposite fibers. Polypropylene/multiwalled carbon nanotubes (PP/MWCNTs) nanocomposite fibers (0-5 wt% of MWCNTs) were prepared via melt spinning process. The MWCNTs were dispersed in the dispersing agent before mixing with PP powder. After mixing, the dispersing agent was removed. Then the nanocomposites were spun into fibers. The fibers were spun and stretched with 7.5 draw ratios. Crystallization behavior and thermal properties of PP/MWCNTs nanocomposite fibers were studied using the differential scanning calorimeter (DSC) and thermogravimetric analyzer (TGA). The DSC curves of PP/MWCNTs nanocomposite fibers showed the crystallization peak at a temperature higher than that of neat PP fibers. These results revealed that the MWCNTs acted as nucleating sites for PP crystallization. The additions of MWCNTs into PP leaded to an increase in both crystallization temperature and crystallization enthalpy. However, no significant changes in the melting temperatures of the PP nanocomposites were detected. Degradation temperature of samples obtained from the TGA curves showed increase thermal degradation behavior for the PP/MWCNTs with the content of MWCNTs. It was found that the increase of tensile strength and modulus corresponded well with the increase of crystallinity of the composite fibers. © Springer Science+Business Media, LLC 2010.en_US
dc.subjectEngineeringen_US
dc.subjectMaterials Scienceen_US
dc.titleThe relationship of crystallization behavior, mechanical properties, and morphology of polypropylene nanocomposite fibersen_US
dc.typeJournalen_US
article.title.sourcetitleJournal of Materials Scienceen_US
article.volume46en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.