Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/49983
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tawat Soitong | en_US |
dc.contributor.author | Jantrawan Pumchusak | en_US |
dc.date.accessioned | 2018-09-04T04:21:15Z | - |
dc.date.available | 2018-09-04T04:21:15Z | - |
dc.date.issued | 2011-03-01 | en_US |
dc.identifier.issn | 15734803 | en_US |
dc.identifier.issn | 00222461 | en_US |
dc.identifier.other | 2-s2.0-79958020062 | en_US |
dc.identifier.other | 10.1007/s10853-010-4987-1 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79958020062&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/49983 | - |
dc.description.abstract | This study aimed at the fabrication of lightweight and high performance nanocomposite fibers. Polypropylene/multiwalled carbon nanotubes (PP/MWCNTs) nanocomposite fibers (0-5 wt% of MWCNTs) were prepared via melt spinning process. The MWCNTs were dispersed in the dispersing agent before mixing with PP powder. After mixing, the dispersing agent was removed. Then the nanocomposites were spun into fibers. The fibers were spun and stretched with 7.5 draw ratios. Crystallization behavior and thermal properties of PP/MWCNTs nanocomposite fibers were studied using the differential scanning calorimeter (DSC) and thermogravimetric analyzer (TGA). The DSC curves of PP/MWCNTs nanocomposite fibers showed the crystallization peak at a temperature higher than that of neat PP fibers. These results revealed that the MWCNTs acted as nucleating sites for PP crystallization. The additions of MWCNTs into PP leaded to an increase in both crystallization temperature and crystallization enthalpy. However, no significant changes in the melting temperatures of the PP nanocomposites were detected. Degradation temperature of samples obtained from the TGA curves showed increase thermal degradation behavior for the PP/MWCNTs with the content of MWCNTs. It was found that the increase of tensile strength and modulus corresponded well with the increase of crystallinity of the composite fibers. © Springer Science+Business Media, LLC 2010. | en_US |
dc.subject | Engineering | en_US |
dc.subject | Materials Science | en_US |
dc.title | The relationship of crystallization behavior, mechanical properties, and morphology of polypropylene nanocomposite fibers | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Journal of Materials Science | en_US |
article.volume | 46 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.