Please use this identifier to cite or link to this item:
Title: Improved photoelectrode of dye-sensitized solar cell using a ZnO/Zn 2TiO4
Authors: Warut Koonnasoot
Atcharawon Gardchareon
Supab Choopun
Duangmanee Wongratanaphisan
Keywords: Engineering
Materials Science
Physics and Astronomy
Issue Date: 3-Oct-2011
Abstract: Zinc titanate nanostructures were prepared by oxidation reaction technique. Here Zn mixed with 0, 10, 20 and 30 mol% of TiO2 powder was screened on alumina and FTO substrate, and then sintered at 400-600°C for 12 h under normal atmosphere. Through a detailed field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), and x-ray diffraction (XRD) indicated that the nanostructures exhibited belt-like shapes of Zn 2TiO4 phase. Moreover, the belt-like nanostructures of the synthesized Zn2TiO4 were studied in terms of optical properties by the UV-vis spectroscopy (UV-vis) to obtain band gap energy (E g). The results showed that the Eg gap energy ranged from 3.57 eV to 3.63 eV as the mol% of TiO2 increased. In addition to the characterization of the nanobelts, the synthesized Zn2TiO4 nanostructures were applied as a bilayer semiconductor electrode in ZnO-based dye-sensitized solar cell (DSSC). It was shown that the use of Zn 2TiO4 nanostructure with 10 mol% TiO2 in the ZnO/Zn2TiO4 electrode components of the DSSC revealed the highest obtainable efficiency. © (2011) Trans Tech Publications.
ISSN: 02555476
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.

Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.