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ร่ำงกำยของสัตวท์ดลองขนำดเล็ก เทคโนโลยีน้ีสำมำรถใช้เพื่อคน้หำเซลล์ท่ีสนใจไดทุ้กท่ีทัว่ทั้งตวั
ของสัตวท์ดลองดว้ยควำมแม่นย  ำในระดบัเซลลเ์ดียว ในกำรศึกษำน้ีผูว้ิจยัสนใจในกำรตรวจหำทีเซลล์
ท่ีถูกยอ้มด้วยสำรฟลูออเรสเซนต์สีเขียวในตับของหนูทดลองท่ีมีภำวะ Graft-versus Host disease 
อย่ำงไรก็ตำมกำรตรวจหำทีเซลล์มีควำมทำ้ทำยสูงและยำก เน่ืองจำกออโต้ฟลูออเรสเซนต์ในตับ 
โดยเฉพำะอยำ่งยิ่งท่ีเกิดจำกท่อน ้ ำดีและถุงน ้ ำดี มีสเปกตรัมท่ีคลำ้ยกนักบัสัญญำณของทีเซลล ์นกัวิจยั
พบว่ำออโตฟ้ลูออเรสเซนต์เหล่ำน้ีส่วนใหญ่จะมีกำรต่อกนัเป็นโครงสร้ำงขนำดใหญ่ในปริมำตรสำม
มิติ ในขณะท่ีเซลล์ท่ีผูว้ิจยัสนใจจะมีลกัษณะอยู่แยกกันอย่ำงโดดเด่ียว ผูว้ิจยัพฒันำอลักอริทึมซ่ึง
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e 
 

Thesis Title A Novel Algorithm for Detecting Isolated Green 

Fluorescently-Labeled Cells in Cryo-imaging Data 

Author Mr. Thanapong Chatboonward 

Degree Master of Engineering ( Biomedical Engineering ) 

Advisor Asst. Prof. Dr. Patiwet Wuttisarnwattana 

 

ABSTRACT 

 

Cryo-imaging is a biomedical imaging technology for studying cellular biodistribution in 

small animal models. It can be used to locate cells of interest anywhere in a whole animal 

scale with single cell sensitivity. In this study, we are interested in green fluorescently 

labeled T-cells in the liver of the Graft-versus-Host disease mouse model. However, the 

detection of green fluorescently labeled cells is quite highly challenging and difficult due 

to the autofluorescence in the liver, especially bile duct and gall bladder. They have the 

same spectrum as the signal of T-cells. We observed that autofluorescence mostly tended 

to form into the dense structure in 3D volume whereas the cell signals of interest were 

distributed and isolated throughout the liver tissue. We developed an algorithm that 

consisted of two essential parts: the T-cell signal detection and the removal of the 

autofluorescent signals. The detection part consisted of thresholding on imaging data 

converted by Mexican hat filtering and Top-hat transformation. The second part was 

measuring the voxel density in 3D space with Mean Inter-Particle Distance for 

eliminating noises. In this study, we used both synthetic data and real data to test the 

algorithm performance. We found that the sensitivity and specificity of detection were 

around 80-90% and 98%, respectively. In conclusion, we successfully developed an 

algorithm for detecting green fluorescently labeled cells and cleaning the structured 

autofluorescent signals for the first time. We believe that this research is a further 

development of the capability and efficiency of Cryo-imaging technology. As a result, 

the technology should become more well-known to the medical science community, and 

it will greatly benefit the development of small animal research in the future.  
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GLOSSARY 

Autofluorescence Green spectrum light emitted by biological organelles such as, 

lysosomes and mitochondria. 

CFSE Carboxyfluorescein Succinimidyl Ester, A fluorescent dye for cell 

staining. 

Cryo-imaging A biomedical imaging technology for studying cellular 

biodistribution in small animal models. 

Euclidean distance A distance between two voxels in 3D volumetric data. 

GVHD Graft-Versus-Host Disease, a condition that the donor T-cells 

recognize the recipient as foreign after an allogeneic transplant. 

K-d tree A K-dimensional tree for organizing data structure in K-

dimensional space. 

k nearest neighbors An algorithm for finding the k nearest neighbor. 

Mexican hat filtering A image processing technique used for detecting bright signals. 

MIPD Mean Inter-Particle Distance, an averaged distance measured by 

averaging the distance from voxel of interest to other voxels.  

OCT gel Optimal cutting temperature gel, a glycol and resin-based 

compound gel used for dipping the small animal samples in cryo-

imaging system. 

Synthetic cells  The synthetic data that was created for imitating the real cells. 

T-cells One of the important types of white blood cells that plays a crucial 

role in the immune system.  

Top-hat transform A morphological image processing technique used for extracting 

small elements and details. 
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Chapter 1 

Introduction 
 

1. Introduction 

 

Biomedical imaging technologies have an important role in clinical diagnosis due to some 

examinations, especially the internal organs of the body that are not easily accessible. 

Many imaging technologies, including, Computerized tomography (CT), Magnetic 

resonance imaging (MRI), Positron emission tomography (PET), and bioluminescence 

imaging are widely used in both medical diagnosis and molecular imaging studies [1]. 

Each has unique features for different clinical diagnoses. CT scan is best for imaging 

bones [2]. It can also perform vascular imaging if a contrast agent is used [3]. MRI is 

capable of distinguishing soft tissues such as gray matter and white matter in the brain. It 

is best for separating watery and fatty tissues. MRI is used clinically such as neurological 

diseases [4], cardiovascular diseases [5], musculoskeletal diseases [6], and oncological 

diseases [7]. PET is mainly used for functional imaging such as metabolism imaging [8], 

cancer biology [9], perfusion imaging [10], and cardiovascular diseases [11]. 

Bioluminescence imaging is specifically used pre-clinically in transgenic mice. The cells 

of interest are genetically modified to produce proteins that can chemically produce light 

similar to the process observed in fireflies [12]. Although, all these techniques can provide 

whole animal scale imaging, they have some critical limitations. One of these is that they 

cannot provide a single cell sensitivity over a large volume of a small animal. This feature 

can be observed in intravital imaging or phase contrast imaging [13, 14]. But still, these 

two cannot provide whole animal imaging because they have a limited field of view. 

Cryo-imaging is the only technology that amazingly overcomes these limitations 

as it provides whole animal scale imaging with single cell sensitivity. Cryo-imaging can 

provide a high-resolution 3D volume of a whole mouse and internal organs (Figure. 1.1-

1.2). Cryo-imaging has been used to study cellular biodistribution in small animal models 

[15-17], co-localization of various cell types in different tissues [18], cancer metastasis 

studies [19], cardiovascular disease treatments [20], and more [21]. 
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Figure 1.1 Cryo-imaging provides high resolution cryo-image of the whole mouse. The coronal 

section of the cryo-image is observed for clearly identifying major organs such as lungs, liver, 

heart, stomach, intestine, and colon. [22] 

 

Figure 1.2 shows the 3D visualization of cryo-images. (A) 2D coronal sections shown in figure 

1.2 are visualized in the 3D volume of the whole mouse. Cryo-imaging can also provide 3D 

reconstructed of segmented organs such as segmented lungs with internal vasculature (B). [22] 

Cryo-imaging is designed and developed by the research group led by David L. 

Wilson [23]. The developed cryo-imaging system can provide high-resolution 3D 

volumetric imaging data on the whole small animal body. It produces high resolution 

anatomical brightfield and molecular fluorescent images and it can also be seen at the 

level of single fluorescent cells anywhere. This unique feature has not been observed in 

any other biomedical instruments before. Cryo-imaging consists of a built-in automatic 

cutter and a tiled microscope imaging system (Figure 1.3B) including, a whole mouse 

cryo-microtome (Figure 1.3A) cabinet which operates at -20◦C and the automated-3-axes 

stepper control (Figure 1.3D) which moves the microscope in the proper position. The 

cryo-imaging system is shown in Figure 1.3. The first step in the cryo-imaging starts with 

dipping the mouse samples with OCT (Optimal Cutting Temperature) gel, which is a 
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glycol and resin-based compound. The sample is immersed and hardened using liquid 

nitrogen. After the mouse sample is solidified, it is then firmly fixed on the cutting stage 

to prevent the sample from moving out of the proper position. When the mouse sample is 

attached to the cutting stage (Figure 1.3H), the stage begins to move back and forth, and 

the blade (Figure 1.3G) begins to slice the sample into a very thin sheet. The microscope 

on the top of the system then starts to image the block face. The process of slicing and 

imaging is continuously repeated until the entire mouse sample is completely gone. Both 

brightfield (Figure 1.4A) and fluorescent images (Figure 1.4B) are obtained during the 

process. The cryo-imaging takes approximately 12 hours to complete the entire mouse 

imaging. All the image data can be visualized in 3D volumetric data and can be extracted 

for the 3D segmented organs as shown in figure 1.5. 

 

Figure 1.3 Cryo-imaging is a sectioning-and-imaging system for small animal models. The system 

consists of a cryo-microtome (A), tiled microscope (B), low-noise camera (C), stepper control 

(D), illuminators (E), and control computer (F). Figure 1.3H. shows the cutting stage with OCT 

embedded mouse sample. The cutting stage will move back and forth, and the blade (G) will slice 

the mouse sample into a very thin sheet. [22] 

 



 

4 

 

 

Figure 1.4 Cryo-imaging provides high resolution color brightfield images (A) and molecular 

fluorescent images (B) of the whole mouse. [15] 

 

 

Figure 1.5 Cryo-imaging system provides tiled imaging of the whole mouse and stitches the 2D 

tiled cryo-images into 3D volume (A). The 3D visualization of cryo-images can provide both 

physical and molecular fluorescence data of the whole mouse (B). The internal organs of interest 

can also be extracted and seen in any position (C) including, zooming at the cellular level (D). 

[24] 
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2. Cryo-imaging study of a T-cell biodistribution in a graft-versus-host disease 

mouse model 

 

In previous reports [15-18], Wuttisarnwattana and his colleagues studied the 

biodistribution of stem cells and T-cells in graft-versus-host disease (GVHD) mouse 

model. They hypothesized that mesenchymal stem cells could alleviate GVHD symptoms 

in the mouse model. They tracked where these cells went after the intravenous injection 

using cryo-imaging. To track these cells under the cryo-imaging system, the stem cells 

were labeled with red fluorescent dyes while the T-cells were labeled with green 

fluorescent dyes. 3D visualization results showed that cryo-imaging was enabled to study 

both stem cell and T-cell biodistribution in a whole mouse scale with single cell 

sensitivity as shown in figure 1.6. They found that stem cells and T-cells were tracked 

and co-localized in both secondary lymphoid organs such as, spleen and lymph nodes and 

GVHD target organs such as lung, liver, skin, G.I. tract, and thymus after intravenous 

injection. These key organs were the locations where hMSCs (human mesenchymal stem 

cells) immunomodulation occurred [18]. This is the first time that biodistributions of stem 

cells and T-cells in the mouse model were qualitatively and quantitatively identified. 

However, the quantification of the green fluorescently T-cells has not yet been 

established. 

 

Figure 1.6 Cryo-imaging system enables to visualize stem cell (b) and T-cell (a) tracking and co-

localize (c) in a whole mouse scale with single cell sensitivity. Both red labeled stem cells and 

green fluorescently labeled T-cells were significantly detected in the secondary lymphoid organs 

and GVHD target organs. They were mostly located in spleen (SP), lung (LU), liver (LV), 

mesenteric lymph nodes and G.I. tract (mLN & GI), femur bone marrow (BM), and inguinal 

lymph nodes (iLN). [25] 
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3. Significance of the research 

 

Although the previous studies could identify the red fluorescently labeled stem cells in 

various organs of the mouse model, the missing story is to establish the T-cell 

biodistribution. T-cell is one of the essential immunological cells, that has various 

functions. For example, responding to pathogens or foreign substances, balancing 

immune homeostasis, responding to inflammation, and more. T-cells also play a crucial 

role in GVHD development [26]. Since the donor T-cells recognize the recipient as 

foreign, the recipient’s immune cells are unable to resist donor T-cells and induce a 

GVHD development. Therefore T-cell biodistribution study is needed. The problem is to 

analyze the green fluorescently T-cells in different organs, especially with highly 

autofluorescence like the liver. Autofluorescence naturally occurs in almost all animal 

tissues, especially in connective tissues [27, 28]. The emission of autofluorescent light is 

from a biological structure such as elastin and collagen. It is well known that bile 

produced in the liver and other connective tissues have highly autofluorescence in the 

green spectrum as captured by cryo-imaging (Figure 1.7) [29]. It is extremely difficult to 

distinguish between the green cells and those autofluorescence. By counting the green T-

cells in the liver volume, the results significantly contain false positives that make the 

results unreliable. Thus, we need an algorithm capable of eliminating the 

autofluorescence or noises but preserving the green cell signals. To best of our 

knowledge, there is no such algorithm published to solve this specific problem before. 

Hence, this project is significant. 
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Figure 1.7 Liver fluorescent image of a mouse model showed a high autofluorescence emitted by 

bile and other connective tissues. The left arrow is the bile duct, and the right arrow is the gall 

bladder. Both bile duct and gall bladder produce most of the highly autofluorescence in the liver. 

(Unpublished) 

 

4. Purpose of the study 

1. To develop an algorithm for detecting isolated green fluorescently labeled cells 

in liver mouse cryo-imaging data. 

2. To reduce the autofluorescent signals in the liver data that mainly comes from 

the biliary tract. These signals are supposedly noises that may interfere with the 

quantification of the green fluorescently labeled cells. 

 

5. Scope of the research 

1. The cryo-imaging dataset used in this study is the secondary source from previous 

studies and is authorized to use by Prof. David L. Wilson of Case Western 

Reserve University, USA. The details of the experiment and the imaging 

protocol can be read in the previous studies [23]. 
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2. The algorithm is created specifically for detecting green fluorescently labeled T-

cells in livers. The T-cells are assumed to be scattered and isolated in the tissue 

of interest. Clustered T-cells are not considered in this study. 
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Chapter 2 

Literature Reviews 

 

1. Stem cell detection in Cryo-imaging 

In a previous study [15], Wuttisarnwattana and his colleagues developed a robust 

algorithm for stem cell detection in cryo-images of mouse models. They used a cryo-

imaging system to study stem cell biodistribution and track stem cells in the whole mouse 

models with single cell sensitivity. The stem cells used in this study were multipotent 

adult progenitor cells (MAPCs) and they were labeled with red quantum dot dye (Figure 

2.1). The stem cells appeared as red spots in fluorescent cryo-images. They proposed 

their novel algorithm for detecting red labeled stem cells in cryo-images. The first step 

of the algorithm was to eliminate nonessential regions (such as fur, embedding medium, 

and G.I. tract) to reduce number of pixels in consideration. They then extracted the stem 

cell features in fluorescent images using sombrero filtering and top-hat transformation 

(Figure 2.2). These techniques were used to maximize the cell signals and suppress the 

background signals. They identified the candidate pixels using thresholding rules of the 

extracted features. They then classified the candidate pixels as either cells or background 

by using the bagged decision trees [30]. Finally, they segmented the complete cell patches 

from the fluorescent volume (Figure 2.3). This new algorithm could accurately detect and 

quantify the stem cell signals. The contribution of this research was the uniqueness of 

tracking cells with single cell sensitivity on a whole mouse scale for the first time.  
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Figure 2.1 Cryo-imaging enables the provision of anatomical color brightfield (a) and molecular 

fluorescence (b) images in great detail. It can be used to detect red quantum dot stem cells (c) 

anywhere in a whole mouse with single cell sensitivity. [15] 

          

Figure 2.2 Sombrero filtering and top-hat transformation were applied to both red (a) and green 

(b) fluorescent images for extracting cell features. Sombrero filtering was used to detect bright 

fluorescent cells in red (c) and green (b) channel. Top-hat transformation was used to separate 

small elements and details from the red (e) and green (f) fluorescent images.  [15] 
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Figure 2.3 A supervised classifier provides cell detection in a binary image (a) as output. The 

binary image is used to dilate and identify the segmented cluster (b). It is used to mask the top-

hat transformation (d) in the red channel (c).  A segmented cell cluster is provided as the result in 

grayscale (e). [15] 

 

2. Cryo-imaging and microspheres-based blood flow 

In a previous study [31], the researchers compared myocardial perfusion imaging using 

CT estimations of quantitative blood flow to fluorescent microsphere cryo-images in 

porcine ischemic model. They inserted the balloon for inducing ischemia and measuring 

the extent of ischemia. They used fluorescent microspheres to test myocardial blood flow. 

First, they injected red fluorescent microspheres and collected a blood sample. Second, 

they used the inflated balloon to induce a stable ischemia. They then injected green 

fluorescent microspheres and collected a separate blood sample. After that, the animal 

was taken to the CT scanner for a dynamic myocardial perfusion imaging CT scan and 

analyzed for blood flow quantification. They then used the Cryo-imaging to acquire both 

brightfield and fluorescent images. They measured myocardial blood flow in the cryo-

images by microspheres density methods. The microspheres density is defined as: 

(
𝐹𝑙𝑜𝑤

𝑉𝑜𝑙𝑢𝑚𝑒
)𝑡𝑖𝑠𝑠𝑢𝑒 =  

(
𝐶𝑜𝑢𝑛𝑡

𝑉𝑜𝑙𝑢𝑚𝑒
)𝑡𝑖𝑠𝑠𝑢𝑒

𝐶𝑜𝑢𝑛𝑡𝑏𝑙𝑜𝑜𝑑
∗  𝑅𝑎𝑡𝑒𝑏𝑙𝑜𝑜𝑑 
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 Where (
𝐶𝑜𝑢𝑛𝑡

𝑉𝑜𝑙𝑢𝑚𝑒
)𝑡𝑖𝑠𝑠𝑢𝑒 is the microsphere count density in the myocardium 

measured by Cryo-imaging, 𝐶𝑜𝑢𝑛𝑡𝑏𝑙𝑜𝑜𝑑 is the microsphere count in the collected blood 

samples measured by flow cytometry, and 𝑅𝑎𝑡𝑒𝑏𝑙𝑜𝑜𝑑 is the withdraw rate of the collected 

blood sample. Finally, the detected images of both red and green microspheres were 

acquired. The cryo-images showed the microspheres-based blood flow quantification as 

shown on Figure 2.4.  Figures 2.4c and 2.4e show that the left anterior descending (LAD) 

coronary artery is clear. Figures 2.4d and 2.4f show hemodynamically stenosis in the 

LAD. By measuring microsphere density method, we hypothesized that this density 

method could be applied to our research. 

 

 

Figure 2.4 Cryo-images and processing for microsphere-based blood flow measurement as an 

example. (a) Anatomical data and tissue segmentation from a brightfield image. (b) fluorescent 

images of red and green microspheres. (c) Red microspheres have been identified. Green 

microspheres were detected in (d). For (e) red microspheres and (f) green microspheres, MBF 

maps were obtained by cryo-imaging.  

 

3. High spatial resolution measurements of organ blood flow in small laboratory 

animals 

In another study [32], the researchers used fluorescent microspheres to test blood flow 

distribution within the organs of a small animal. They dissected the organs and measured 

blood flow distribution in those organs. They created the tree structure and stored the 

spatial coordinates of all microspheres to determine the distance between microspheres. 

They observed that there were more microspheres in higher blood flow locations than in 
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lower blood flow locations. The higher the density of microspheres distributed in that 

location, the lower the mean of the nearest microsphere distance measured. Therefore, 

the mean of the nearest microsphere distance is proportional to the blood flow. They 

found that the density measure of microspheres represented the spatial distribution of 

blood flow in the organ. With the microsphere density method, they visualized the spatial 

distribution of blood flow using contour maps (Figure 2.5). The point of interest in this 

study was that they used Mean inter-particle distance (MIPD) to quantify the density of 

microspheres in blood flow. This density method was successfully used to estimate the 

quantitative distribution of microspheres and blood flow in the organs. Thus, we applied 

the same principles to our research using MIPD as the density method.   

 

 

Figure 2.5 represents a 2D contour map of blood flow in rabbit heart and rat lung using the 

microsphere density method. The higher the density of microspheres, the higher the relative blood 

flow in that location. [32] 
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Chapter 3 

Experiment methods 

 

1. Cryo-imaging Data 

 

Cryo-imaging data used in this study were the secondary data from a another study [15]. 

We were authorized to use the data by Prof. David. L. Wilson, a director of the biomedical 

laboratory at Case Western Reserve University, USA, and all animal experiments were 

approved by the Institutional Animal Care and Use Committee (IACUC) at Case Western 

Reserve University, USA. The main purpose of this research was to study the 

biodistribution of alloreactive T-cells in a GVHD mouse model using cryo-imaging. 

However, in this study, we focused only on analyzing the livers of the mouse data. Figure 

3.1 showed a single cryo-imaging slice of the liver as well as a surface rendering of the 

liver. T-cells in this study were stained with a green fluorescent dye which was 

carboxyfluorescein succinimidyl ester (CFSE). The CFSE dye is a well-known fluorescent 

dye used for studying lymphocyte proliferation [33]. CFSE is a cell-permeable dye and is 

covalently bound to intracellular molecules of T-cells via CFSE’s succinimidyl group [17]. 

T-cells uptake CFSE dye and appeared green in the fluorescent image. With the optical 

setting, the cell signal appeared as green spots in the fluorescent image (Figure 3.2). Details 

of the experiments and the findings are outlined in the original papers [15-18].  

   

Figure 3.1 showed a single fluorescent (A), brightfield (B) cryo-imaging slice, and surface 

rendering (C) of the liver. 
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Figure 3.2 Example of an isolated green fluorescently labeled cell signal. In this experiment, T-

cells were labeled with green fluorescent dyes and intravenously injected into a mouse. T-cells 

could be found in many organs, including the liver (A). Interestingly, the signal of green cells 

appeared in the green channel (B) but not in the red channel (C). 

 

2. Green Cell Detection 

 

In this study, T cells were seen as tiny pixels and the details inside the cell were not visible 

because of the magnification of the microscope. Since this study was designed to 

investigate the whole animal scale, the magnification was set to scope the whole animal 

scale. So, the details of cells such as the nucleus were not seen. Cell signals of interest 

could be seen as the green spots against a greenish background in the fluorescent images 

(Figure 3.2). We observed that signals of the green cells (T-cells) appeared in the green 

channel but not in the red channel of the fluorescent image. The algorithm should be able 

to distinguish between pixels of the green cells and pixels of the background. As inspired 

by the previous study [15], we employed Mexican hat filtering and top-hat transformation 

to extract cell features in each fluorescent image. Both spatial filters are capable of 

maximizing the cell signals while suppressing the background signals. Mexican hat 

filtering, also known as inverted Laplacian of Gaussian (-LoG), is defined as: 

Filtered I = 𝐼 ∗ (−𝐿𝑜𝐺(𝜎𝑓𝑖𝑙𝑡𝑒𝑟))  (1) 

  where ∗ represents as 2D correlation, Filtered I is the fluorescent image filtered by 

the Mexican hat filtering, I is the fluorescent image before filtering, 𝐿𝑜𝐺 is a kernel that 

has the appropriate parameter 𝜎𝑓𝑖𝑙𝑡𝑒𝑟 to calculate. The parameter is chosen to maximize 

the signal to noise ratio (SNR) value. 
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  Top hat transformation is a digital image processing technique that is used to 

separate small elements and details against a relatively homogenous background. The 

transformation is defined as: 

𝑡𝐼 = 𝐼 − (𝐼 ∘ 𝐷𝑖𝑠𝑘(𝑅𝑓𝑖𝑙𝑡𝑒𝑟 ))   (2) 

  where ∘ represents as grayscale morphological opening, tI is the fluorescent image 

filtered by top hat transformation, I is the fluorescent image before filtering, 𝐷𝑖𝑠𝑘 (𝑅𝑓𝑖𝑙𝑡𝑒𝑟) 

is the disk structuring element that has 𝑅𝑓𝑖𝑙𝑡𝑒𝑟 as a radius. 

 In this study, we only used red and green channels of RGB fluorescent images because 

the fluorescent excitation light was in the blue spectrum so the blue channel was filtered 

out during the fluorescent image acquisition. Thus, we applied the Mexican hat filtering 

and the top-hat transformation to red and green channels of the RGB fluorescent image, 

giving a total of four extracted features (Figure 3.3). 

 

Figure 3.3 Green cell signals are not appeared in the red channel (A) but appeared in the green 

channel (B) of the fluorescent image. We performed feature extraction to the green cell signals 

giving 4 features in total: Mexican hat filtering of the red channel (C) and the green channel (D), 

Top-hat transformation of the red channel (E), and the green channel (F). 

 After applying Mexican hat filtering and top hat transformation, we then identify 

the candidate pixels which represent the pixels that are very likely to be the green cells. 

This can be done simply by applying thresholds to the extracted features. This technique 

Original Image Mexican hat filtered Top-hat transformation 

Red Channel 

Green channel 

A C E 

B D F 

500 𝜇m 500 𝜇m 500 𝜇m 

500 𝜇m 500 𝜇m 500 𝜇m 
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is based on an assumption that signals of the green cells appear only in the green channel, 

but not in the red channel. Also, most of the autofluorescence signals appear in both red 

and green channels (Figure 3.3). Autofluorescence signals usually come from bile ducts, 

gall bladder, and other connective tissues. Therefore, a candidate pixel is defined as a 

pixel that has strong signals in both extracted features of the green channel, and it must 

also have the green composition be greater than the red composition. This can be 

translated into an equation: 

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = (𝑓𝐺 > 𝑇𝑓𝐺)  ∩ (𝑡𝐺 > 𝑇𝑡𝐺)  ∩ (𝑡𝐺 > 𝑡𝑅) ∩  𝑇𝑖𝑠𝑠𝑢𝑒 𝑚𝑎𝑠𝑘𝑠 (3) 

 where 𝑓𝐺 represents the Mexican hat filtered green feature, 𝑡𝐺 represents the top-

hat transformed green feature, 𝑡𝑅 is the top-hat transformed red feature, 𝑇𝑓𝐺 and  𝑇𝑡𝐺  are 

threshold values for selecting the bright green signals, and 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 are the pixels with 

a high probability of being the green cells. 𝑇𝑖𝑠𝑠𝑢𝑒 𝑚𝑎𝑠𝑘𝑠 are the binary images of liver 

tissues used to exclude the irrelevant parts of liver tissues. Note that this process can 

significantly reduce the number of pixels in consideration as compared to processing the 

whole image (Figure 3.4). 

         

Figure 3.4 We identify the candidate pixels that potentially are the green cells. This can be done 

by applying thresholding to the four extracted features. It could significantly reduce the number 

of background pixels that are not green cells for further processing. Fig A shows the original liver 

image with isolated fluorescently labeled cells and Fig B shows the results of the candidate pixels 

in a binary image. The yellow arrows indicate the autofluorescence signals and the red arrows 

indicate the green cell signals. 

 

500 𝜇m 500 𝜇m 

A B 
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3. Tissue mask creation 

 

A tissue mask is used to remove immaterial parts outside liver tissues. We manually 

created tissue masks by hand drawing using Amira software (Thermo Fisher Scientific). 

First, we loaded fluorescent images of liver tissue (Figure 3.5A). We then made a drawing 

according to the shape of liver tissue. We repeated the manual segmentation process to 

all images in the liver. In total, we had 7 livers in this study. An example of a fluorescent 

slice of a liver and the corresponding tissue mask are shown in figure 3.5. 

 

Figure 3.5. shows fluorescent image (A) and tissue mask (B) of the liver tissue. 

 

4. Autofluorescence Cleaning 

 

Green autofluorescence of the biliary tract and other tissues in fluorescent cryo-images of 

the liver tend to form large and dense structures in 3D volume. On the other hand, the 

green T-cells of interest tend to be isolated and spread throughout the liver tissues. For 

this reason, we expect that the 3D voxel density surrounding a voxel of interest can be 

used to distinguish between green cells vs. green autofluorescence (noises). Since we 

assume that the autofluorescent voxels reside close to each other and form dense 

structures, the voxel density among them should be very high. Therefore, we hypothesize 

that voxels of the isolated green cell should have a much lower voxel density as compared 

to those calculated from noises. 
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To measure the voxel density, we use mean inter-particle distance (MIPD) [32]. 

The MIPD is measured by averaging the distances from a voxel of interest to the k nearest 

voxels in 3D space. The MIPD is formulated as followed: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 + 42(𝑧𝑖 − 𝑧𝑗)2 (4) 

 

𝑀𝐼𝑃𝐷𝑖 =
1

𝑘
∑ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗

𝑘
𝑗=1  (5) 

 

Distanceij represents the Euclidean distance of voxel i (xi, yi, zi) to voxel j (xj, yj, 

zj). MIPDi is the mean interparticle distance of voxel i to k nearest voxels (j = 1…k). 

Please note that we have 42 in front of the z axis to account for anisotropic effect of the 

voxel dimension, i.e., the voxel size is 10 µm x 10 µm x 40 µm. 

Smaller MIPD indicates higher voxel density surrounding the voxel of interest 

which suggests that the voxel of interest is the autofluorescence (noises), that should be 

rejected. On the other hand, larger MIPD can be assumed to be a cell voxel, that should 

be preserved.  

The k nearest neighbors algorithm can efficiently be implemented using the K-d 

tree data structure [34], where the searching complexity is reduced from O(n2) to O(n log 

n) and the K is 3 in our application. Please note that K = 3 represents a 3D spatial location, 

whereas k in the k nearest neighbor algorithm defines the number of nearest neighbors. 

To clean autofluorescence signals, a voxel density threshold is applied to all 

detected voxels to determine whether those signals are noises. First, 3D spatial 

coordinates (x, y, z) are extracted from all candidate voxels to create a coordinate list. 

Second, the list is then used to create the K-D -tree data structure. Please note that the 

index coordinates must be converted to physical coordinates to determine the size of the 

anisotropic voxel (Equation 4). Our voxel resolution has an in-plane (or xy) resolution of 

10.5 µm, while the slice thickness (or z) is 40 µm. Therefore, the distance of adjacent 

voxels in the same image (along xy axes) is not equal to the distance of different images 

(along z axis). Third, we iteratively calculate the MIPD for each voxel in the list. This can 

be done by averaging the Euclidean distances measured from the voxel to all k nearest 

neighbors (searching through the K-D tree, Equation 5).  If the voxel’s MIPD is less than 
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a predetermined threshold, we will consider the voxel to be autofluorescence noises and 

then eliminate it immediately. Finally, the remaining voxels will be dilated in 3D and 

applied with connected component analysis to count the number of cell detection. The 

pseudocode of the proposed algorithm is shown in figure 3.6. 

Figure 3.6 Proposed autofluorescent cleaning algorithm pseudocode. 

  

5. Synthetic Cells 

 

We used synthetic cells that mimic the real model T-cells for evaluating the efficiency of 

our detection algorithm. The experiment’s goal was to quantify the number of green cell 

signals in the liver data while suppressing any autofluorescence signals as well as other 

noises. Since we did not have a ground truth indicating the exact locations of the cells in 

livers, we created synthetic cells that were similar to the green fluorescently labeled cells 

in terms of, size, color, and brightness (Figure 3.7). Synthetic cells are uniformly 

distributed throughout liver tissues. If there are a cluster of synthetic cells, we will not 

consider it. Synthetic cells will be added to the control cryo-images that have no cell 

signals. Since we know the exact locations of the synthetic cells in the liver data, we can 

test for false positives and false negatives in our algorithm. If the locations of detected 

signals are not among the synthetic cell locations, the detections will be counted as false 

positives. On other hand, if the locations of synthetic cells are not among the detections, 

we will correspondingly increase the number of false negatives. 

For each fluorescent cryo-image 
     Filter the image with Mexican hat filter and top hat transforms into the red and green channels 
     Identify candidate pixels using thresholding 
Stack the results in the 3D volume 
Extract the physical coordinates of each voxel 
Build the Kd-tree (K=3) structure from the coordinate list 
For each voxel in the list 
     Find k-nearest neighbors and calculate the MIPD 
     If the MIPD threshold < a threshold, then remove the voxel 
Perform 3D dilation and connect component analysis to quantify the number of remaining cells 
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Figure 3.7 shows the similarity of green fluorescently labeled T-cells (A) and synthetic cells (B). 

 

 To create the synthetic cells. First, we loaded the liver volume that has no 

fluorescently labeled cells. We then eliminated the irrelevant area from the liver image 

data to prevent adding the synthetic cells into these areas. These areas include OCT area, 

lymph nodes, gall bladder, and other irrelevant tissues. After that, we randomized 

locations of N to be added to the fluorescent volume ((𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)| i = 1, …, N). These 

locations are constrained to be within the relevant area are described above. We next 

added N synthetic cells to the fluorescence images in the origin locations by creating the 

random number of synthetic cells (𝑛𝑖) from Poisson distribution that has small mean value 

λ. where 𝑛𝑖 is the number of gaussian per cell patches. We then created the small random 

offsets for deciding the available locations of synthetic cells ((d𝑥𝑗, d𝑦𝑗)| j = 1, …, 𝑛𝑖 )) 

from Gaussian random generator that has standard deviation 𝛿𝑜𝑓𝑓𝑠𝑒𝑡  and zero mean. We 

generated Gaussian intensity distribution (𝐺𝑗 (𝑥𝑖+ d𝑥𝑗 , 𝑦𝑖+ d𝑦, 𝑧𝑖 ; 𝛿𝑐𝑒𝑙𝑙 )| j = 1, …, 𝑛𝑖 ). 

where (𝑥𝑖 , 𝑦 , 𝑧𝑖) is the origin locations of synthetic cells, ((d𝑥𝑗, d𝑦𝑗)| j = 1, …, 𝑛𝑖 )) is 

the spatial offsets for the Gaussians, and 𝛿𝑐𝑒𝑙𝑙 is standard deviation. We summarized all 

𝑛𝑖 of Gaussian intensity distribution and adjusted the integrated intensity to match 𝐼𝑐𝑒𝑙𝑙 

for creating synthetic cells. This process is repeated for I = 1 ,…., N. We then multiplied 

the synthetic cells by adjusting green to red ratio of β and created those green synthetic 

cells. Finally, we acquired the synthetic cells in the fluorescent cryo-images with known 

locations. 

 

 

 

 25 𝜇m  25 𝜇m 

A B 
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6. Effect of k and MIPD threshold values on the algorithm performance 

 

We investigated the effect of k (in k nearest neighbors) and the MIPD threshold on the 

algorithm performance. We would like to determine what should be the optimal values of 

these parameters so that the algorithm could be able to mostly clean the autofluorescence 

and minimally affect the detection of cells of interest. In this study, we created synthetic 

data by uniformly distributing 7,500 synthetic cells into two control livers. The number 

of 7,500 was estimated using the mean number of cell signals in the real liver datasets. 

We then repeatedly applied the cell detection and the cleaning algorithm to these synthetic 

datasets with different values of k and MIPD threshold. We varied the values of k from 1 

to 50 and MIPD thresholds from 1 to 50.  We measured the resulting errors in terms of 

normalized errors which were calculated using the sum of false positive rates and false 

negative rates. In this study, false positive rate = FP/(FP+TN) and false negative rates = 

FN/(FN+TP). The optimal k and MIPD threshold values should result in a minimal 

normalized error. 

 

7. Algorithm testing using synthetic data 

 

Our proposed algorithm was assessed for efficiently detecting green fluorescently labeled 

cells by sensitivity and specificity. In this study, we supposed that fluorescently labeled 

cells in the liver tend to be isolated whereas autofluorescent signals, which are mostly 

from the biliary tract, tend to be clustered in 3D volumetric data. From the hypothesis, we 

expected that our developed algorithm could be able to eliminate autofluorescent signals 

and maintain the cell signals of interest. To test the hypothesis, we added the created 

synthetic cells to the control cryo-images of the liver with no fluorescently labeled cells 

and applied an autofluorescent cleaning algorithm to these cryo-images. In this 

experiment, we had two representative control livers. We added 2,500, 5,000, 7,500, … 

up to 20,000 synthetic cells into these two livers. We applied cell detection and 

autofluorescent cleaning algorithms to these datasets. We performed the 3D rendering 

(surface rendering) on the remaining cells to visually evaluate the cleaning performance. 

We also measured the number of detected voxels before and after the autofluorescent 

cleaning process. Since we knew the locations of the synthetic cells. The cell signals that 

are detected and unavailable in the list of the synthetic cells will be counted as false 
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positives. On the other hand, the cell signals that are not detected and available in the list 

of the synthetic cells will be counted as false negatives. The cell signals that are both 

detected and available in the list of the synthetic cells will be counted as true positives. In 

this study, Sensitivity = TP/(TP+FN) and Specificity = TN/(TN+FP). 

 

8. Algorithm testing using real data 

 

We applied our algorithm to real data. We had five different livers with green 

fluorescently labeled cells (real data). We applied the same cell detection and the cleaning 

algorithm to these five liver datasets. We then measured the number of detected voxels in 

pre-cleaning stage and post-cleaning stage to measure the cleaning performance. We 

performed the 3D rendering (surface rendering) on the remaining cells to visually 

evaluate the cleaning performance. 

 

9. Workstation 

 

In this study, we used Matlab 2021a (MathWorks) for developing and testing our 

proposed algorithm. We used Amira (Thermo Fisher Scientific) for visualizing 

fluorescent cryo-images and all the results in 3D volumetric data. The workstation station 

consists of Intel® Core™ i7 CPU 975 @ 3.33GHz, 32.0 GB RAM, 64-bit operating 

system, x64-based processor under Windows 10 operating system. 
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Chapter 4 

Results and Discussion 

 

The green cell detection algorithm could sensitively detect green cell signals as well as 

autofluorescent signals. We tested the algorithm using both livers with the real cell signals 

and livers with the synthetic cells. Three-dimensional visualization of the detected cell 

signals in Figure 4.1 showed that the cell signals appeared mostly as isolated points in 

liver tissues (Figure 4.1). Autofluorescent signals were also detected. When rendered in 

3D, they mostly form noticeable structures (Figure 4.1). The structural noises were mostly 

from bile ducts, gall bladder, and connective tissues. These noises were the 

autofluorescent light released from biological structures within the biliary, tract and liver 

connective tissues. 

 

Figure 4.1 Surface rendering of the results generated by the green cell detection algorithm. The 

liver with green cells signals is in (A). The liver with synthetic cells is in (B). Cell signals of 

interest appeared as uniformly distributed isolated points while the autofluorescent signals 

appeared as structures. 

  

 We determined the effect of the parameters k and MIPD threshold on the 

autofluorescent cleaning performance. We used synthetic data for optimizing the 

parameters. To do so, we uniformly distributed 7,500 synthetic cells into two different 

control livers. The number was estimated by manually examining cell signals in the real 

data, which was around 5,000 – 10,000 cells per liver. We then applied the autofluorescent 

cleaning algorithm with different values of k and MIPD threshold as described in the 

Method chapter. We measured the numbers of cell detections, false positives, and false 
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negatives for each variation. The normalized error was calculated by sum of false positive 

rates and false negative rates. The relationship between the normalized error and the 

parameters, k, and MIPD threshold, is color-coded where red points represent higher error 

and blue points represent lower error. The result shows that the optimal k is in the range 

of [1, 5] while the optimal MIPD threshold is in the range of [5, 20]. The optimal values 

for eliminating autofluorescent signals with less impact on the cell detection are in the 

dark blue zone (Figure 4.2). In this study, we chose the k and MIPD threshold to be 3 and 

15, respectively, for control liver 1 and we also chose k and MIPD to be 3 and 13, 

respectively, for control liver 2. 

 

Figure 4.2 shows the relationship between the normalized error, and the parameters, k values 

from 1 to 50, and MIPD thresholds from 1 to 50 for control liver 1(A), and control liver 2(B). 

 

 We successfully cleaned the autofluorescent signals in control livers with 

synthetic cells. After optimizing the parameters, we applied the algorithm to the synthetic 

data created previously. The results of cell detections are shown in Figures 4.3A and 4.3C, 

for control liver 1 and control liver 2, respectively. After we applied the autofluorescent 

cleaning, the structured noises were mostly eliminated while the cell signals were mostly 

preserved, as shown in figure 4.3B and 4.3D.  
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Figure 4.3 shows the image analysis of liver cryo-images with synthetic cells. The results of pre-

cleaning consist of both cells of interest and autofluorescence (A, C) and post-cleaning show the 

eliminating of autofluorescence and maintaining of the cell of interest (B, D). 

 

 We conducted an additional experiment to test the robustness of the algorithm by 

adding different amounts of synthetic cells to the control livers. The number of detected 

voxels before the cleaning and after the cleaning, false positives, false negatives, 

sensitivity, and specificity for the control liver 1 were measured for the different number 

of added cells. Since we knew the exact locations of synthetic cells, we could count the 

number of false positives and false negatives from the list of synthetic cell locations. False 

positives were the number of detected voxels that the algorithm could detect but were not 

found in the synthetic cell list. False negatives were the number of detected voxels that 

the algorithm could not detect but were found in the synthetic cell list. The results were 

shown in Table I. The same analyses were applied to the control liver 2. The results were 

shown in Table II. The results showed that when we added more synthetic cells to the 

liver, the number of false negatives proportionally increased, while the number of false 

positives slightly decreased. We believed that by adding more cells into the liver, the 

detection per unit volume would increase. This subsequently rendered the cell detection 

in the liver to behave closely to the autofluorescence, which could result in a greater 

number of false negatives. Sensitivity was the proportion of true positives or synthetic 
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cells that the algorithm could detect. Specificity was the proportion of true negatives or 

autofluorescent noises that the algorithm could reject. Thus, the sensitivity values 

decreased from 87% to 80% in control liver 1 and 93% to 90% in control liver 2 (Figure 

4.4A, Table I-II). By the same token, all autofluorescent noises were progressively 

eliminated as we added more cells. The specificity values were approximately 98% in 

both control liver 1 and control liver 2 (Figure 4.4B, Table I-II). Note that we used the 

same detection/cleaning parameters to all synthetic data. 

 

Table I. Algorithm performance in control liver 1. 

 

 

 

Control 

liver 1 

Number of 

detected voxels 

(Pre-cleaning) 

Number of 

detected voxels 

(Post-cleaning) 

Number 

of false 

positives 

Number 

of false 

negatives 

Specificity Sensitivity 

2,500 

cells 
103,069 3,607 1,330 315 98.67 87.40 

5,000 

cells 
105,301 5,644 1,277 616 98.72 87.32 

7,500 

cells 
107,825 7,930 1,235 975 98.76 87.00 

10,000 

cells 
110,375 10,159 1,177 1,485 98.82 85.15 

12,500 

cells 
112,558 11,925 1,128 1,909 98.87 84.72 

15,000 

cells 
114,799 13,672 1,100 2,539 98.89 83.07 

17,500 

cells 
117,035 15,345 1,062 3,213 98.93 81.64 

20,000 

cells 
119,273 17,058 1,071 3,904 98.92 80.48 



 

28 

 

Table II. Algorithm performance in control liver 2. 

 

 

Figure 4.4 shows the relationship between Sensitivity and Cell density (A), and Specificity and 

Cell density (B). 

 

 

Control 

liver 2 

Number of 

detected voxels 

(Pre-cleaning) 

Number of 

detected voxels 

(Post-cleaning) 

Number 

of false 

positives 

Number 

of false 

negatives 

Specificity Sensitivity 

2,500 

cells 
70,823 3,415 1,089 151 98.40 93.96 

5,000 

cells 
73,278 5,720 1,045 290 98.46 94.20 

7,500 

cells 
75,943 8,201 1,025 451 98.50 93.98 

10,000 

cells 
78,212 10,277 987 622 98.55 93.38 

12,500 

cells 
80,670 12,561 981 819 98.56 93.44 

15,000 

cells 
83,237 14,864 967 1,102 98.58 92.65 

17,500 

cells 
85,786 17,000 950 1,499 98.61 91.43 

20,000 

cells 
88,359 19,085 943 2,000 98.62 90.00 
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 We observed that an increasing number of false negatives or lost synthetic cells 

occurred when they were distributed close to the autofluorescence as shown in figure 4.6. 

Since our cleaning algorithm calculated the autofluorescence with density methods, we 

found that the more added synthetic increased their density in the liver volume and tended 

to be close to the autofluorescence.  

 

Figure 4.5 the red circles showed the false negative results or the synthetic cells that were wrongly 

removed and the yellow circles showed the autofluorescent noises that were correctly removed 

after the cleaning process. 

 

 The algorithm successfully detected the cells of interest and cleaned the 

autofluorescent signals in the livers with real cell signals. In this experiment, we used 5 

representative livers with real cells from the mouse experiment. We observed that the 

algorithm was able to detect cell signals as well as eliminate most of the structural 

autofluorescent signals (Figure 4.6). Since we lacked the ground truth that indicated the 

actual locations of all cells in liver data, we manually examined the remaining cell 

detections to check if they were real cells or noises. The detections could be marked as 

the real cells if the detected blobs appeared only in the green channel but not in the red 

channel. We repeatedly checked the results and confirmed that 80-90% of the detections 

were probably the real cells, whereas the rest were the unstructured autofluorescence. 
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Figure 4.6 shows the image analysis of five different liver cryo-images with green fluorescently 

labeled cells. The results of pre-cleaning consist of cell signals and autofluorescence (A, C, E, G, 

I) and post-cleaning show the eliminating of structured autofluorescence and remaining of cell 

signals and unstructured autofluorescence (B, D, F, H, J). 

 

 We then performed quantitative analysis after applying the autofluorescent 

cleaning to the liver data with real cell signals. We measured the number of detected 

voxels before and after the cleaning using five representative livers. The first livers (Liver 

1, Figure 4.6A) contained high autofluorescent density whereas the other four livers 

contained much lower autofluorescent density (Liver 2-5, Figure 4.6C, 4.6E, 4.6G, 4.6I). 

We observed that there are large autofluorescence structures in the first livers. Although 

the numbers of autofluorescent signals were reduced due to Mexican hat filtering and top-

hat transformation with thresholding rules, the first liver still had remarkably high 

autofluorescence. By applying the cleaning algorithm to Liver 1, the number of detected 

voxels reduced from 263,131 to 4,885 which is a 98.14% reduction. We found that a large 

number reduction (98%) was due to the effectively structured noise-cleaning ability of 

the algorithm. The numbers are also reported in Table III. In addition, other livers with 

less autofluorescence (Liver 2-5) were also tested in the same way and yielded similar 

results (Table III). In Liver 4, we found that most of the detected voxels consisted of cell 

signals, thus the autofluorescent cleaning could reduce the number of detected voxels by 

around 87%.  
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Table III. The number of green fluorescently labeled cell detections. Liver 1 contains high noise 

density. Liver 2 - 5 contain low noise density. 

  

 The algorithm effectively eliminated structured autofluorescent signals in the liver 

data even if the liver had no cell signal. In this experiment, we applied the cleaning 

algorithm to liver data that had no fluorescently labeled cell or synthetic cell. The results 

showed that structured noises were effectively removed (Figure 4.7A, 4.7C). Only the 

unstructured noises remained. Interestingly, these isolated noises were distributed 

throughout the liver tissues. Therefore, our cleaning algorithm could not remove 

autofluorescent signals that looked like real isolated cells (Figure 4.7B, 4.7D). Further 

studies need to investigate the unstructured noises and we are still in need to develop an 

algorithm for cleaning these noises. 

 
Number of detected 

voxels 

(Pre-cleaning) 

Number of detected 

voxels 

(Post-cleaning) 

%Detected voxels 

Reduction 

Liver 1 263,131 4,885 98.14 % 

Liver 2 112,275 5,459 95.14 % 

Liver 3 84,941 5,435 93.60 % 

Liver 4 83,335 10,711 87.15 % 

Liver 5 87,451 4,731 94.59 % 
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Figure 4.7 Results of applying the autofluorescent cleaning to the livers voided of cell signal. The 

results of pre-cleaning consist of only autofluorescence (A, C) and post-cleaning show the 

eliminating of structured autofluorescence and remaining of unstructured autofluorescence (B, 

D). 
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Chapter 5 

Summary 

 

We successfully developed an algorithm for detecting isolated green fluorescently labeled 

cells and cleaning autofluorescent signals in cryo-images of liver mouse samples for the 

first time. A challenge of this research was the detection of green fluorescently labeled 

cells among green autofluorescent noises, which are extremely difficult to distinguish. 

The key assumption for eliminating the autofluorescent noises was that voxels of the 

noises were assumed to be among a dense cluster of the voxels in 3D space. On the other 

hand, we assumed that the cell signals were isolated and distributed throughout the liver. 

We proposed that voxel density could be used to distinguish between the cells and the 

noises. We also proposed that the quantity to measure voxel density was a mean 

interparticle distance (MIPD) of the considering voxel to neighboring voxels. If the MIPD 

was less than a certain threshold, then the voxel of interest could be considered a noise 

because it was among a dense cluster. We suggested that the MIPD calculation could be 

performed efficiently using the Kd-tree data structure, where the searching complexity 

can be reduced from O(n2) to O (n log n).  

 We tested the algorithm performance using synthetic cells. The results show that 

the algorithm could effectively eliminate structural noises and had less impact on the 

detections of the green cells. The specificity values, that indicated the accuracy of the cell 

detection, were approximately 98%. (Figure 4.4B). However, the sensitivity values 

proportionally decreased from 93% to 80% as we added more cells from 2,500 to 20,000 

(Figure 4.4A). We concluded that the cleaning capacity depended on cell density in the 

liver because most of the lost synthetic cells were distributed close to the autofluorescence 

(Figure 4.5).  

 We also tested the autofluorescent cleaning algorithm with the real data. Although 

we did not have ground truth indicating the actual location of all cells, we assumed that 

the quantitative results from the real data should be comparable with the ones from the 

synthetic data experiment. In the real data experiment, we applied the algorithm to 5 livers 

with real cells. The qualitative results showed that the structured autofluorescent noises 

were effectively removed (Figure 4.6). Our algorithm was considered successful in 

eliminating most of the structural autofluorescence signals that were mainly in the liver. 
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On the other hand, further studies of unstructured autofluorescent signals needed to be 

studied and developed in the future. Since we manually examined the remaining cells, we 

found that most of them were the actual T-cells. T-cells could be seen as the green spots 

against a greenish background in the fluorescent images because of the CFSE dyes 

(Figure 3.2). We observed that signals of the green cells (T-cells) appeared in the green 

channel but not in the red channel of the fluorescent image. In addition, we could also 

increase the magnification or use histology stains to verify that those green spots were the 

actual T-cells. We suggested that if we would like to study the details inside T-cells, we 

could use nucleus staining methods for identifying the features of the cells. However, the 

staining methods still had a limited field of view because of the very high magnification. 

 We realized that the aforementioned assumptions might not be valid in some 

situations. For example, if a mouse model had a chronic inflammation, T-cells would 

infiltrate potential lesions to neutralize foreign pathogens and perform healings [35]. 

Another example is that if a mouse model had T-cell priming in lymphoid tissues, the T-

cells would highly be likely to form dense clusters [36]. In this study, we assumed that 

the mice used in this study had not yet developed any chronic inflammation or T-cell 

priming in the liver because the researchers injected the T-cells into the mouse only 24 

hours before the imaging. We observed that most of the exogenous T-cells should either 

be in circulation or remained in an inactive state or mostly resided in the secondary 

lymphoid organs (such as spleen and lymph nodes). However, further biological 

experiments were needed to investigate all these confounding factors. Again, in this study, 

we were only interested in isolated T-cells in liver and ignored all clustered T-cells. 

 In conclusion, we developed an algorithm for detecting isolated green 

fluorescently labeled cells and eliminating largely structured autofluorescent signals for 

the first time. With our proposed algorithm, we could be able to solve the problem of 

autofluorescent interference and establish T-cell biodistribution. Since the T-cell 

distribution is established, we should be able to study the crucial role of T-cells that are 

particularly important in GVHD development. The limitation of our algorithm is specific 

only for the disease mouse model under cryo-imaging technology. Moreover, this study 

should expand the capability and biomedical applications of the cryo-imaging technology. 

Hopefully, we believe that the utilities of cryo-imaging technology will become more 

well-known and have a great impact on animal imaging research in the future. 
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