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หัวข้อวิทยานิพนธ์ การระบุเสียงผดิปกติของปอดแบบอตัโนมติัดว้ยวิธีการเรียนรู้ของเคร่ือง 

ผู้เขียน นาย รัตนธร เพช็รถม 

ปริญญา วิศวกรรมศาสตรมหาบณัฑิต (วิศวกรรมชีวการแพทย)์ 

อาจารย์ที่ปรึกษา ศ. ดร. นิพนธ์ ธีรอ าพน 

บทคดัย่อ 

งานวิจยัน้ีน าเสนอการระบุเสียงผิดปกติของปอดจากสัญญาณเสียงแบบอตัโนมติัโดยใชก้าร
วิเคราะห์ความถ่ีเชิงเวลา และโครงข่ายประสาทเทียมแบบคอนโวลูชนั โดยใชส้ัญญาณเสียงท่ีบนัทึก
ได้จากการใช้สเต็ทโตสโคป ซ่ึงจะถูกก าจดัสัญญาณรบกวนด้วยการใช้ตวักรองความถ่ีแถบผ่าน 
จากนั้นน าไปสกดัคุณลกัษณะเด่นโดยใชก้ารแปลงฟูริเยร์แบบช่วงเวลาสั้นเพื่อใหไ้ดอ้งคป์ระกอบทาง
ความถ่ีในรูปแบบสเปกโตรแกรม จากนั้นสเปกโตรแกรมจะถูกน ามาตรวจหาเพื่อแบ่งรอบการหายใจ
โดยอาศยัการหายอดท่ีสูงท่ีสุดและต ่าท่ีสุด เพื่อให้ทราบจ านวนรอบการหายใจตลอดสัญญาณเสียง 
จากนั้นรอบการหายใจทั้งหมดจะถูกแบ่งเป็นขอ้มูลฝึกสอนและขอ้มูลทดสอบ โดยโครงข่ายประสาท
เทียมแบบคอนโวลูชนัจะอาศยัขอ้มูลฝึกสอนดงักล่าวในการเรียนรู้เพื่อให้ไดต้น้แบบท่ีดีท่ีสุด จากผล
การทดลองดว้ยวิธีการท่ีน าเสนอ สามารถจ าแนกเสียงการหายใจแบบหวีด เสียงแซมการหายใจ และ
เสียงการหายใจแบบปกติ ไดอ้ย่างมีประสิทธิภาพโดยมีความถูกตอ้งท่ีระดบัร้อยละ 85.34 ร้อยละ 
68.20 และร้อยละ 60.64 ตามล าดบั  
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ABSTRACT 

 This study introduces an automated approach for identifying abnormal lung 

sounds from audio recordings utilizing time-frequency analysis and convolutional neural 

networks. Acoustic signals captured via a stethoscope are subjected to noise removal 

using a bandpass filter. Subsequently, distinctive features are extracted via a short-time 

Fourier transform to represent frequency components in the form of a spectrogram. The 

spectrogram facilitates the segmentation of breathing cycles by identifying the highest 

and lowest peaks, thereby quantifying the number of breathing cycles within the audio 

signal. Following this segmentation, the breathing cycle is partitioned into training and 

test datasets, with the convolutional neural networks trained on the former to optimize 

model performance. Experimental findings demonstrate that the proposed method 

effectively achieves the accuracies of 85.34 percent, 68.20 percent, and 60.64 percent for 

wheezing sounds, crackle sounds, and normal sounds, respectively.  
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CHAPTER 1 

Introduction 

1.1 Background and Motivation 

Respiratory ailments are often assessed by analyzing lung sounds, employing a 

diagnostic tool as a stethoscope instrument to detect irregular sounds. Precise 

identification of these sounds is essential for accurate diagnosis and subsequent treatment. 

Although auscultation via the stethoscope is a straightforward method, precise diagnosis 

demands expertise, posing potential difficulties for inexperienced practitioners. In light 

of this, our objective is to devise an algorithm that can autonomously distinguish between 

normal breathing sounds and abnormal breathing sounds, particularly categorizing them 

as either wheezes or crackles. The deployment of such an algorithm offers numerous 

potential advantages, such as streamlining the subjective assessment process for 

healthcare professionals in discerning normal and abnormal lung sounds, and diminishing 

the bias linked with subjective evaluations reliant on observer expertise. This study delves 

into the prevalence and clinical relevance of crackles and wheezing [1] in respiratory 

disorders, leveraging recorded lung sound signals for analysis. 

Breath sounds represent a vital sign originating from the thoracic region during the 

process of inhalation and exhalation [2]. These sounds are readily perceptible in tranquil 

surroundings or when individuals consciously attend to their breathing. The act of 

respiration is orchestrated by the synchronized movements of breathing muscles, 

generating breath sounds as air traverses the air passages. Each complete sequence of 

inhalation and exhalation constitutes a breathing cycle. The principal muscle responsible 

for respiration is the diaphragm, which contracts during inhalation, thereby augmenting 

lung volume and facilitating air intake. Conversely, during exhalation, as the diaphragm 

releases, lung volume diminishes, and air flows out from the lungs. Consequently, 

inhalation and exhalation emerge, delineating distinct phases within the breathing cycle. 
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The diagnostic procedure for respiratory conditions typically entails auscultation, a 

method in which healthcare practitioners assess the lungs by listening to specific areas on 

the chest wall, including the anterior, posterior, and lateral regions. The presence of 

unusual sounds during this examination, known as adventitious sounds (abnormal 

sounds), includes manifestations like crackles and wheezing, characterized by 

fluctuations in frequency, pitch, intensity, and energy. Analyzing these adventitious 

sounds offers crucial insights for diagnosing lung conditions. Therefore, the principal 

aims of this study are twofold: firstly, to develop an algorithm capable of differentiating 

between normal and abnormal breathing sounds by identifying lung sound cycles. 

Secondly, to accurately classify abnormal sounds, such as crackles or wheezing, based on 

recorded lung sound data sourced from a respiratory dataset. To ensure precision, all 

sound files undergo noise elimination processes before being segmented into individual 

lung sound cycles.  

Finally, Convolutional Neural Networks (CNNs) are deployed to discern abnormal 

sounds within these cycles. This algorithmic strategy facilitates the swift and accurate 

detection of anomalous breath sounds, thereby enhancing diagnostic proficiency in the 

realm of respiratory medicine. 

This thesis is structured as follows: Chapter 2 provides background information on 

respiratory sound processing and reviews related works in the field. In chapter 3, the 

experimental framework employed in this research is elaborated upon. Chapter 4 presents 

the experimental results and subsequent discussion. Ultimately, the concluding remarks 

of this thesis are encapsulated in the concluding chapter 5. 

1.2 Literature Review 

The automatic acoustic identification of respiratory sounds holds promise for aiding 

healthcare professionals in the classification of diseases pertaining to the human 

respiratory system, such as pneumonia, asthma, and Chronic Obstructive Pulmonary 

Diseases (COPD) [3]. These diseases manifest distinct acoustic patterns discernible 

during the auscultation of lung sounds. The classification tasks in this domain can be 

broadly delineated into two categories: disease classification [3] and abnormal sound 

classification [4]. Concurrently, there is a burgeoning need for novel and simplified 
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methodologies aimed at detecting respiratory diseases from lung sounds. Examples 

include the development of a robust deep learning framework [5], the isolation of lung 

sounds from mixed heart and lung sounds [6], and the investigation into the non-linearity 

and non-stationarity nature of lung sound signals [7]. 

In light of the challenges posed, researchers have endeavored to devise innovative 

algorithms aimed at discerning between normal breath sounds and abnormal breath 

sounds, notably crackles and wheezing. While identifying normal breath sounds poses 

relatively fewer complexities, crackle and wheezing sounds can manifest in various lung 

lobes, including the trachea. Wheezing sounds, characterized by extended duration and 

heightened loudness, typically exhibit frequencies ranging from 250 to 400 Hz. In 

contrast, crackle sounds manifest as continuous popping sounds throughout the breath 

cycle and can occur across a broad spectrum of frequencies within the lung sound 

spectrum [8]. A plethora of studies have been conducted to differentiate between normal 

and abnormal lung sounds, employing diverse techniques and algorithms. Examples 

include the utilization of the Hough transform of spectrograms [9], Wavelet Packet 

Decomposition (WPD) [10], the Adaptive Multi-level In-Exhale Segmentation 

(AMIE_SEG) technique [11], and time-expanded waveform analysis [12]. These 

advancements have laid the groundwork for more precise and automated analyses of 

respiratory sounds, thereby enhancing the diagnosis and treatment of respiratory diseases. 

Several research endeavors have concentrated on diagnosing diseases based on lung 

sounds, with a particular emphasis on mitigating noise interference, notably from heart 

sounds [13, 14]. Moreover, investigations have delved into noise removal methodologies, 

particularly in scenarios where heart sounds encroach upon lung sounds [15-17]. These 

scholarly inquiries have played a pivotal role in advancing noise elimination techniques 

and precise disease diagnosis via lung sounds, effectively tackling the hurdles posed by 

overlapping heart sounds and diverse ambient noises. 

Moreover, the normal breath sounds, also known as vesicular breath sounds, exhibit 

distinct characteristics that differ from abnormal lung sounds such as crackles and 

wheezing, as illustrated below [8]. 



 

4 

In Figure 1.1, the normal breath sound is distinguished by its gentle, low-pitched 

quality with a rustling characteristic. During inhalation, it becomes more audible and 

persists longer compared to exhalation, with a ratio of expiration to inspiration 

approximately at 1:3. As depicted in Figure 1.2, crackle sounds are typified by their 

popping, low-pitched features accompanied by a bubbling quality. They exhibit increased 

volume and duration compared to fine crackles and can be perceived during both 

inhalation and exhalation. Wheezing, illustrated in Figure 1.3, manifests as a continuous 

sound that can vary in pitch, ranging from high-pitched (squeaking) to low-pitched 

(snoring or moaning). This phenomenon arises from airway constriction, resulting in an 

elongated wheezing phase experienced during both inhalation and exhalation, where Y 

axis is an amplitude of normalized in dB and X axis is time in second. 

 

Figure 1.1 Signal of normal breath sound 

 

Figure 1.2 Signal of crackle sound 
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Figure 1.3 Signal of expiration wheezing sound 

These descriptions offer a comprehensive understanding of the distinguishing 

features of vesicular breath sounds, crackles, and wheezing. Familiarity with these 

distinct sound profiles can significantly assist healthcare professionals in accurately 

identifying and diagnosing various respiratory conditions during the auscultation process. 

The subsequent investigations presented diverse objectives, with certain endeavors 

aimed at contrasting machine learning methodologies for the detection of various 

respiratory phenomena such as wheezing, crackling, simultaneous occurrence of 

crackling and wheezing, cardiac and pulmonary disorders, inspiratory and expiratory 

events, or instances of coughing. Others sought to delineate methodologies concerning 

the differentiation between normal and abnormal respiratory patterns, feature extraction 

techniques, noise reduction strategies, and classification methodologies. 

Oweis RJ, Abdulhay EW, Khayal A, and Awad A [7] showed the comparison of 

Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) 

toolboxes that were applied to 10 lung sounds to classify them. The result showed that 

accuracy, specificity, and sensitivity of ANN was better than ANFIS of 98.6, 100, and 

97.8%, respectively. 

Zhang KX, Long Z, Wang XF, and Zhao H [9] used Hough transform of 

spectrogram to detected wheezing sound. The approach initially employed Canny edge 

detection operator to identify edges followed by used Hough transform to analyze 

wheezing from the international shared lung sound files. The results of detection show 

87% accuracy of 60 wheezing cases, and 74% accuracy of 70 normal cases. 
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Zhang J, Wang HS, Zhou HY, Dong B, Zhang L, Zhang F, et al. [10] performed 

feature extraction WPD of crackles and wheeze sounds. And then data were trained by a 

Support Vector Machine (SVM). Results show an accuracy, sensitivity, and specificity of 

90.3, 88.3, and 92.3% of crackles and 87.1, 86.7, and 87.5% of wheezing, respectively. 

Chen H, Yuan X, Li J, Pei Z, and Zheng X [11] enhanced the features of wheezing 

for classification by AMIE_SEG that is for extracting inspiration and expiration. And 

wheezing will be extracted by Enhanced Generalized S-Transform (EGST) feature. After that 

the authors employed three machine learning-based classifiers: SVM, Extreme Learning 

Machine (ELM) and K-Nearest Neighbor (KNN). The results show KNN is the best method 

with accuracy, sensitivity, specificity as 98.62%, 95.9% and 99.3% in average respectively. 

Sovijarvi ARA, Helisto P, Malmberg LP, Kallio K, Paajanen E, Saarinen A, et al. 

[12] conducted a study on a respiratory sound analyzer system designed to automatically 

analyze crackle sounds. The analysis involved several techniques, including phono 

pneumography, time-expanded waveform analysis, spectral analysis utilizing time-averaged 

Fast Fourier Transform (FFT), frequency analysis in the time domain (sonogram), and 

automatic detection and waveform analysis of crackles. The study concluded that the median 

frequency exhibited the best repeatability among quartile frequencies of breath sounds.  

Chowdhury SK and Majumder AK [13] used FFT to describe for spectrum analysis 

of respiratory sounds of six normal cases and six patients with tuberculosis. The result shows 

that the amplitude of tuberculosis patients was shift to 1,000 Hz from normal cases at 250 Hz. 

Fraiwan L, Hassanin O, Fraiwan M, Khassawneh B, Ibnian AM, and Alkhodari 

M [14] identified asthma, heart failure, pneumonia, bronchiectasis, bronchitis, and COPD. 

Initially, features such as Shannon Entropy, Logarithmic Energy Entropy, and Spectrogram-

Based Spectral Entropy were extracted. These features were then used to train both baseline 

models, including SVM, KNN, Decision Tree and Linear Discriminant Analysis and 

ensemble models which are Bagged Decision Tree, Bagged Linear Discriminants, Boosted 

Decision Trees, and Boosted Linear Discriminants. After that performed evaluation of 

accuracy, sensitivity, specificity, F1-score, and Cohen’s kappa correlation. The results show 

the best performance is the boosted decision tree model of ensemble classification as 

demonstrated by its highest 98.20% accuracy, 91.50% sensitivity and 98.55% specificity. 
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Ghaderi F, Mohseni HR, and Sanei S [15] located heart sound components in 

mixed between heart and respiratory sound by using Singular Spectrum Analysis (SSA) 

to show the frequency of heart and lung sound signals that normally overlap in each other. 

The result compared with well-established methods; wavelet transform, and entropy of 

the signal and result of heart detection showed that wavelet transform was slightly better 

than entropy-based method. 

Iyer VK, Ramamoorthy PA, Fan H, and Ploysongsang Y [16] investigated 

technique using adaptive filtering to reduce heart sound out from mixed between breath 

sound and heart sound. The result showed percent of heart sound removing is 50 to 80 

percent. 

Suzuki A, Sumi C, and Nakayama K [17] used adaptive filtering technique to 

remove ambient noises; environment sound, device noise, human voice, etc. that 

disrupted while recording the lung sounds. This method can remove the noises by about 

30 dB using a 256-tap filter with the convergence time of several seconds and, it is very 

effective for a lung sound analysis preprocessing tool by real-time processing. 

Kandilogiannakis G, Mastorocostas P, and Varsamis D [18] separated the 

abnormal sounds of the lungs from the vesicular breath sounds by a computational 

intelligence-based filter that used two operating in parallel Dynamic Fuzzy Neural 

Networks (DFNN) to perform the tasks. 

Kok XH, Anas Imtiaz S, and Rodriguez-Villegas E [19] used feature extractions 

and Wilcoxon Rank Sum statistical test to identify respiratory disease from recording 

files. The results of training achieved accuracy of 87.1%, sensitivity of 86.8% and 

specificity of 93.6%. 

Li S and Liu Y [20] present a vector of feature extraction of normal, pneumonia 

and asthma lung sounds based on bispectrum that is 2-D Fourier transform of third order 

cumulants. 

Manir SB, Karim M, and Kiber MA [21] performed Digital Signal Processing 

(DSP) methods to perform various features such as RMS, Zero Crossings, Turn Count, 

Mean, Variance and Form Factor. 
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Bahoura M and Pelletier C [22] classified between normal and wheezing lung sounds 

with Gaussian Mixture Models (GMM) method. Mel-Frequency Cepstral Coefficients 

(MFCC) or Subband Based Cepstral (SBC) parameters characterize overlapped signal 

segments and then compare with other Vector Quantization (VQ) and Multi-Layer Perceptron 

(MLP) neural networks. 

Hsu FS, Huang CJ, Kuo CY, Huang SR, Cheng YR, Wang JH, et al. [23] 

demonstrated a lung sound labeling algorithms to classify inspiration, expiration, and abnormal 

sounds with six feature vectors. The result show F1-scores of 86.0% on inspiration task, 51.6% 

on continuous abnormal sound task and 71.4% on discontinuous abnormal sound task. 

Neili Z, Fezari M, and Redjati A [24] compared the ability of ELM and KNN machine 

learning algorithms between normal and abnormal lung sounds. First, the authors used 

Empirical Mode Decomposition (EMD) to analyze lung sounds. Then into Intrinsic Mode 

Functions (IMD). The Hjorth descriptors (Activity) and Permutation Entropy (PE) are the 

features from each IMFs and then combined. The results show an accuracy of 90.71 and 

95.00% using ELM and KNN, respectively. 

Kumar A, Vincent DRPM, Srinivasan K, Chang C-Y [25] combined Deep Learning 

and Machine Learning techniques in infant cry activities; hungry, pain, and sleep cries base on 

SVM, Naïve Bayes and KNN. The results show accuracy of SVM at 93.3%, Naïve Bayes at 

86.6% and KNN at 88.3%. 

Vashkevich R and Azarov E [26] used pitch-invariant convolutions on frequency axis 

of amplitude spectrum in speech processing to detect activity of voice. The result shows a 

comparison with publicly available voice activity detection model from the WebRTC showed 

higher F1 scores (0.94 versus 0.87). 

Reyes BA, Charleston-Villalobos S, González-Camarena R, and Aljama-Corrales 

T [27] sought a technique to obtain a Time-Frequency Representation (TFR) of thoracic sound 

by comparing general goodness-of-fit criteria in different simulated thoracic sounds scenarios. 

Time-frequency patterns of thoracic sounds; heart, normal tracheal and adventitious lung 

sounds were assessed by mathematical functions to find the best TFR. Results showed that the 

Hilbert-Huang Spectrum (HHS) had a superior performance as compared with other 

techniques. 
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Palaniappan R, Sundaraj K, Sundaraj S, Huliraj N, and Revadi S S [28] 

employed the Wavelet Packet Transform (WPT) to extract energy and entropy features 

from lung sound signals. The study reported maximum accuracies of 97.36% and 98.37% 

for Conventional Validation (CV) of the energy and entropy, respectively. Additionally, 

Cross Validation (CRV) yielded accuracies of 96.80% and 97.91% for energy and entropy, 

respectively. Furthermore, ensemble features achieved accuracies of 98.25% for CV and 

99.25% for CRV, respectively. 

Yan J, Shen X, Wang Y, Li F, Xia C, Guo R, et al. [29] performed WPT and SVM 

algorithm to analysis. The authors employed WPD at level 6 to split more elaborate 

frequency bands of the auscultation signals. After that analyze statistic based on the 

extracted Wavelet Packet Energy (WPE) features from WPD coefficients. In additional, 

mixed subject’s statistical feature values of sample groups through SVM was used to be 

separated by the pattern recognition. Finally, the results showed that the classification 

accuracies were at a high level. 

Singh RS, Saini BS, and Sunkaria RK [30] proposed a novel method for detecting 

coronary artery disease (CAD) utilizing Heart Rate Variability (HRV) signals. Their 

approach involved employing Multiscale Wavelet Packet (MSWP) transform and entropy 

feature extraction to decompose the HRV signals. The detection performance was 

evaluated using the Fisher ranking method, Generalized Discriminant Analysis (GDA), 

and a binary classifier known as Extreme Learning Machine (ELM). Results indicated 

that the proposed approach outperformed other methods, particularly when utilizing the 

top ten ranked entropy features for dataset combination. The datasets included self-

recorded data representing Normal Sinus Rhythm (Self_NSR), healthy Normal Sinus 

Rhythm (NSR), and CAD patients sourced from a standard database. Notably, the 

multiquadric method achieved an approximate detection accuracy of 100%, surpassing 

ELM and linear discriminant analysis.  
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Ono M, Arakawa K, Mori M, Sugimoto T, and Harashima H [31] identified fine 

crackle sounds from vesicular sounds by using a nonlinear digital filter that separate 

nonstationary which is a characteristic of crackle sounds from stationary signals in six 

participants who were diagnosed with pulmonary fibrosis. The result showed that this 

method is useful enough in clinical medicine. 

Ademovic E, Pesquet JC, and Charbonneau G [32] used the Adaptive Local 

Trigonometric Decomposition (ALTD) in the time-frequency domain with a lattice in time to 

identify wheezing from lung sound signals. 

Kiyokawa H, Greenberg M, Shirota K, and Pasterkamp H [33] investigated lung 

fine, medium, and coarse crackle sound detector. The authors computerized analysis of lung 

sounds within and between physical observers. The results showed the conditions of failed 

detection that was more common in 1) higher intensity background lung sounds compared to 

lower intensity background lung sounds, 2) coarse or medium crackles compared to fine 

crackle and 3) small amplitude compared to large amplitude of crackle sounds. 

Kandaswamy A, Kumar CS, Ramanathan RP, Jayaraman S, and Malmurugan 

N [34] demonstrated that lung sound signals should not use the conventional method of 

frequency analysis because, its classification is not successful. And the authors showed the 

wavelet transform analysis method of lung sound signals with ANN classification and trained 

by the resilient backpropagation algorithm. 

Guntupalli KK, Alapat PM, Bandi VD, and Kushnir I [35] investigated to detect 

wheezing pattern from dynamic image of lung sound on spectral analysis using a 

computerized automatic stethoscope compared to the physicians in seven subjects with 100 

sound files. The overall results showed 84% of the sensitivity inter-rater agreement. 

Wang Z and Xiong YX [36] used acoustic device to estimate lung sound patterns using 

computerized analysis in acute congestive heart failure and improvement patients, normally, 

this disease presents the adventitious sounds. The result showed the homogenous distribution 

of lung vibration energy was more increase geographical area of the vibration energy image. 

And this analysis may be useful to track in acute congestive heart failure recurrence. 
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Gurung A, Scrafford CG, Tielsch JM, Levine OS, and Checkley W [37] traced meta-

analysis of Computerized Lung Sound Analysis (CLSA) for the best specific respiratory disease 

detectors. The authors forecasted the sensitivity and specificity of CLSA and, found that electret 

microphones or piezoelectric sensors for auscultation, and Fourier Transform and Neural Network 

algorithms for analysis and automated classification of lung sounds mostly used. The overall result, 

sensitivity, and specificity for the detection of wheezes or crackles was 80% and 85% respectively. 

Ellington LE, Emmanouilidou D, Elhilali M, Gilman RH, Tielsch JM, Chavez MA, et 

al. [38] found that distinct spectral and septotemporal signal parameters of age, height, and weight 

do not make lung sounds difference with genders. Moreover, younger children had a slower 

decaying spectrum than older children. In conclusion, lung sound characteristics of lung sound 

features of children varied significantly.  

Kosasih K, Abeyratne UR, and Swarnkar V [39] used wavelet analysis of a range up to 

90 kHz that above the human perception of 90 cough sound samples from 4 patients. The result 

showed the R2 of 77 to 82% at 15 to 90 kHz frequencies and, the R2 increased to 85 to 90% at 

frequencies that below 15 kHz. 

Kosasih K, Abeyratne UR, Swarnkar V, and Triasih R [40] utilized wavelet features in 

conjunction with other features such as Mel Cepstral coefficients and non-Gaussian index to detect 

childhood pneumonia from a dataset comprising 815 cough sounds. Their findings revealed a 

sensitivity of 94% and specificity of 63%. Furthermore, when combined with the findings of 

previous research (High frequency analysis of cough sounds in pediatric patients with respiratory 

diseases, 2012 [39]), the sensitivity increased to 94% and the specificity to 88%. 

Haider NS, Joseph J, and Periyasamy R [41] investigated the statistical significance of 

five different spectral lung sounds (maximum frequency, dominant frequency and spectral centroid 

that identified from spectra and, median frequency and spectral roll off that computed from the 

Power Spectral Density (PSD)) that are stridors, wheezing, bronchial, vesicular and crackle using 

Analysis of Variance (ANOVA) and Fisher’s Class Separability Measure (FCSM). The result of 

preprocessing showed P-values at a confidence level of 0.05 for dominant frequency, maximum 

frequency and median frequency, spectral roll off and spectral centroid of 0.0386, 0.7508, 0.0197, 

0.055 and 0.6979, respectively. And FCSM and ANOVA are 0.1242, 0.0192, 0.1498, 0.1112 and 

0.0222, respectively. The median frequency comparatively is more significant than the other four. 
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Habukawa C, Ohgami N, Matsumoto N, Hashino K, Asai K, Sato T, et al. [42] 

made a features algorithm following the Computerized Respiratory Sound Analysis 

guidelines to identify wheezing sounds in 214 children, 2 mouths to 12 years. There were 

65 wheezing sounds and 149 without wheezing sounds. The results showed sensitivity, 

specificity, positive predictive value, and negative predictive value of the wheeze 

recognition algorithm of 100, 95.7, 90.3, and 100%, respectively. 

Naqvi SZH and Choudhry MA [43] developed a novel framework for diagnosing 

COPD, pneumonia, and normal breath sounds. Their approach involved integrating time 

domain, cepstral, and spectral features using the back-elimination method, while 

denoising and segmenting the pulmonic signal were achieved through techniques based 

on EMD and Discrete Wavelet Transform (DWT). Experimental results demonstrated an 

impressive accuracy of 99.70% when employing selected fused features. 

This section encapsulates key summaries from the literature review, depicting 

comparative analyses of machine learning approaches in Table 1.1. Additionally, Table 

1.2 outlines findings related to the detection of wheezing, crackling, simultaneous 

occurrences of crackling and wheezing, cardiac and pulmonary disorders, inspiratory and 

expiratory events, as well as instances of coughing. Furthermore, Table 1.3 provides 

insights into methods pertaining to the differentiation between normal and abnormal lung 

sounds, feature extraction, noise reduction, and classification. 

Table 1.1 Summary review of machine learning comparing 

Literature Concept Algorithm Result 

An alternative 

respiratory sounds 

classification system 

utilizing ANN. [7] 

Comparing 

ANNs and 

ANFIS to 

classify lung 

sounds. 

ANNs and 

ANFIS. 

ANN is the best by 

accuracy, specificity, and 

sensitivity of 98.6, 100.0, 

and 97.8%, respectively. 
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Table 1.1 Summary review of machine learning comparing (continue) 

Literature Concept Algorith

m 

Result 

ELM and K-nn 

machine learning in 

classification of Breath 

sounds signals. [24] 

Comparing 

ELM and KNN 

to classify lung 

sounds. 

ELM and 

KNN. 

Accuracy ELM of 90.71% 

and KNN of 95.00%. 

Deep CNNs based 

Feature Extraction with 

optimized Machine 

Learning Classifier in 

Infant Cry 

Classification. [25] 

Combined ML 

techniques in 

infant cry 

activities; 

hungry, pain, 

and sleep cries. 

SVM, 

Naïve 

Bayes 

and 

KNN 

Accuracy of SVM at 93.3%, 

Naïve Bayes at 86.6% and 

KNN at 88.3%. 

Classification of 

pulmonary pathology 

from breath sounds 

using the WPT and an 

ELM. [28] 

Comparing 

energy and 

entropy feature 

extraction of 

lung sounds. 

WPT, 

CV and 

CRV. 

Max accuracy CV of energy 

and entropy of 97.36% and 

98.37%, CRV of energy and 

entropy of 96.80% and 

97.91%, and CV and CRV 

ensemble feature of 98.25% 

and 99.25%, respectively. 

Table 1.2 Summary review of detection or separation 

Literature Concept Algorithm Result 

Wheezing Detection 

Detection of Wheeze 

Based on Hough 

Transform of Spectrogram. 

[9] 

Separating 

normal and 

wheezing lung 

sounds.  

Hough 

Transform of 

Spectrogram. 

Accuracy for 

wheezing detection 

of 87% and for 

normal lung sounds 

detection of 74%. 
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Table 1.2 Summary review of detection or separation (continue) 

Literature Concept Algorithm Result 

Wheezing Detection 

Automatic Multi-Level In-

Exhale Segmentation and 

EGST for wheezing 

detection. [11] 

Identifying 

wheezing lung 

sounds. 

AMIE_SEG   

and EGST 

feature 

extraction. 

And, be 

trained by 

SVM, ELM, 

and KNN. 

KNN is the best at 

accuracy, sensitivity, 

and specificity of 

98.62%, 95.9%, and 

99.3% by mean. 

Respiratory sounds 

classification using 

cepstral analysis and 

GMM. [22] 

Showing 

method to 

separate normal 

and wheezing 

lung sounds. 

GMM 

(MFCC or 

SBC vectors) 

and compare 

to VQ and 

MLPNW. 

The performance is 

better than nonuse. 

Wheezing lung sounds 

analysis with adaptive 

local trigonometric 

transform. [32] 

Showing 

method to 

identify 

wheezing from 

lung sound 

signals. 

ALTD in 

time-

frequency 

domain. 

Notice that wheeze 

(0.5 s <t< 2 s) is well 

rebuilt and 

composed of large 

segments. And the 

inspiration signal 

just after (2.1 s <t< 

3.7 s). 
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Table 1.2 Summary review of detection or separation (continue) 

Literature Concept Algorithm Result 

Wheezing Detection 

Validation of automatic 

wheeze detection in 

patients with obstructed 

airways and in healthy 

subjects. [35] 

Detecting 

wheezing from 

dynamic image 

of lung sound on 

spectral analysis 

computer 

compared to 

physicians. 

Fourier 

transform 

(spectral 

analysis) 

Inter-rater sensitivity 

of 84%.  

A wheeze recognition 

algorithm for practical 

implementation in 

children. [42] 

Identifying 

wheezing using 

feature 

algorithm 

following the 

Computerized 

Respiratory 

Sound Analysis 

guidelines. 

Wheezes 

features 

following the 

Computerize

d Respiratory 

Sound 

Analysis 

guidelines 

Sensitivity, 

specificity, positive 

predictive value, and 

negative predictive 

value of 100%, 

95.7%, 90.3%, 

100%, respectively. 

Crackle Detection 

A new versatile PC-based 

lung sound analyzer with 

automatic crackle analysis 

(HeLSA); repeatability of 

spectral parameters and 

sound amplitude in healthy 

subjects. [12] 

Investigating 

system to 

analyze crackle 

sounds. 

FFT. Median frequency is 

the best repeatability 

of quartile 

frequencies of breath 

sounds. 
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Table 1.2 Summary review of detection or separation (continue) 

Literature Concept Algorithm Result 

Crackle Detection 

Separation of Fine 

Crackles from Vesicular 

Sounds by a Nonlinear 

Digital Filter. [31] 

Identifying fine 

crackle sound 

from vesicular 

sound. 

Nonlinear 

digital filter. 

It is useful enough in 

clinical medicine. 

Auditory detection of 

simulated crackles in 

breath sounds. [33] 

Investigating 

crackle detector 

and analyze 

within and 

between 

physical 

observers. 

MATLAB; 

MathWorks; 

Natick, MA 

(simulated) 

Result showed 

condition of filed 

detections. 

Crackle and Wheezing Detection 

Real-World Verification of 

Artificial Intelligence 

Algorithm-Assisted 

Auscultation of Breath 

Sounds in Children. [10] 

Identifying 

crackles and 

wheezing lung 

sounds. 

Feature 

extraction 

WPD and be 

trained by 

SVM. 

Accuracy, 

sensitivity, and 

specificity of 

crackles of 90.3%, 

88.3%, and 92.3% 

and wheezing of 

87.1%, 86.7, and 

87.5%, respectively. 

Computerized lung sound 

analysis as diagnostic aid 

for the detection of 

abnormal lung sounds: A 

systematic review and 

meta-analysis. [37] 

Detecting 

wheezing and 

crackles using 

CLSA. 

Fourier 

Transform 

and Neural 

Network 

algorithms. 

Sensitivity of 80% 

and specificity of 

85%. 
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Table 1.2 Summary review of detection or separation (continue) 

Literature Concept Algorithm Result 

Heart and Lung Sounds Detection 

Localizing heart sounds in 

respiratory signals using 

SSA. [15] 

Separating heart 

and lung sounds. 

SAA 

(wavelet 

transform and 

entropy) 

The best algorithm 

for separating is 

wavelet transform. 

Reduction of Heart Sounds 

from Lung Sounds by 

Adaptive Filtering. [16] 

Reducing heart 

sound out of 

breath sounds. 

Adaptive 

filter. 

Removing heart 

sound of 50% to 

80%. 

Respiratory Diseases Detection 

Digital Spectrum Analysis 

of Respiratory Sound. [13] 

Separating 

spectrum of 

normal and 

tuberculosis 

lung sounds. 

Fourier 

Transform. 

Normal spectrum is 

250 Hz and 

tuberculosis is 1,000 

Hz. 

Automatic identification of 

respiratory diseases from 

stethoscopic lung sound 

signals using ensemble 

classifiers. [14] 

Identifying lung 

diseases 

(asthma, heart 

failure, 

pneumonia, 

bronchiectasis, 

bronchitis, and 

COPD). 

Shannon 

Entropy, 

Logarithmic 

Energy 

Entropy and 

Spectrogram-

Based 

Spectral 

Entropy. 

Boosted decision 

tree of ensemble 

class is the best 

accuracy of 98.20%, 

sensitivity of 

91.50%, and 

specificity of 

98.55%. 

A Novel Method for 

Automatic Identification 

of Respiratory Disease 

from Acoustic Recordings. 

[19] 

Identifying lung 

diseases. 

Feature 

extraction 

and WRS. 

Accuracy of 87.1%, 

sensitivity of 86.8%, 

and Specificity of 

93.6%.  
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Table 1.2 Summary review of detection or separation (continue) 

Literature Concept Algorithm Result 

Inspiration and expiration Separation 

Development of a 

respiratory sound labeling 

software for training a 

deep learning-based 

respiratory sound analysis 

model. [23] 

Separating 

inspiration, 

expiration and 

abnormal lung 

sounds. 

Six feature 

extractions. 

F1-scor inspiration 

and expiration of 

86.0%, continuous 

abnormal of 51.6%, 

and discontinuous 

abnormal of 71.4%. 

Coughing Detection 

High frequency analysis of 

cough sounds in pediatric 

patients with respiratory 

diseases. [39] 

Detecting 

coughing 

frequency. 

Wavelet 

analysis. 

R2 of 77% - 82% at 

15 - 90 kHz and it 

increased to 85% - 

90% at below 15 

kHz. 

Wavelet Augmented 

Cough Analysis for Rapid 

Childhood Pneumonia 

Diagnosis. [40] 

Detecting 

coughing sound 

and combined 

with other 

features to 

identify 

childhood 

pneumonia. 

Wavelet 

features and 

others feature 

extraction. 

Sensitivity of 94% 

and specificity of 

63%. And, 

combining with 

(39)’s work 

sensitivity and 

specificity were 

improved to 94% 

and 88%, 

respectively. 
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Table 1.3 Summary review of relevant method 

Literature Concept Algorithm Result 

Adaptive Cancelling 

of Ambient Noise in 

Lung Sound 

Measurement. [17] 

Showing method to 

remove ambient 

noises while 

recording lung 

sound. 

Adaptive filter. It is very effective 

for lung sound 

analysis 

preprocessing tool 

by real-time. 

A computational 

intelligence-based 

filter for lung sound 

separation. [18] 

Showing method of 

identifying normal 

and abnormal lung 

sounds. 

DFNN Filter was efficient 

separation 

performance and 

capable in real-

time. 

Feature Extraction of 

Lung Sounds Based 

on Bispectrum 

Analysis. [20] 

Showing method of 

identifying normal 

and lung disease. 

2-D Fourier 

transform of third 

order cumulants. 

Proper features can 

be extracted from 

bispectrum of lung 

sounds to form the 

feature vector for 

classification. 

Assessment of Lung 

Diseases from 

Features Extraction 

of Breath Sounds 

Using Digital Signal 

Processing Methods. 

[21] 

Showing feature 

extraction of lung 

sounds. 

RMS, zero 

crossing, turn 

count, mean, 

variance, and 

form factor. 

System can 

diagnose lung 

conditions by 

integrating 

artificial 

intelligence. 
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Table 1.3 Summary review of relevant method (continue) 

Literature Concept Algorithm Result 

Assessment of TFR 

techniques for 

thoracic sounds 

analysis. Computer 

methods and 

programs in 

biomedicine. [27] 

Finding technique 

to obtain TFR of 

chest region sounds 

and compare to 

goodness-of-fit 

criteria in different 

simulated thoracic 

sounds scenarios. 

The general class, 

TVAR modeling 

and the 

instantaneous 

power spectrum, 

the scalogram, and 

the Hilbert–Huang 

spectrum. 

HHS is the best 

technique as 

compared to 

others technique. 

Detection of CAD 

by reduced features 

and ELM. [30]  

Showing method of 

detection of CAD 

from HRV. 

MSWP and entropy 

feature extraction. 

Multiquadric 

accuracy of 100% 

as compared to 

ELM and linear 

discriminant 

analysis. 

An automated 

system for 

classification of 

chronic obstructive 

pulmonary disease 

and pneumonia 

patients using lung 

sound analysis. [43] 

Preforming a new 

framework to 

diagnose COPD, 

pneumonia, and 

normal breath 

sound. 

Time domain, 

cepstral, and 

spectral through the 

back-elimination 

method next EMD 

and DWT-based 

techniques used to 

denoise and 

segment. 

Accuracy of 

99.7%. 

1.3 Purposes of The Study 

The purposes are to devise an algorithm capable of discerning lung sound cycles, 

effectively distinguishing between normal and abnormal lung sounds. Specifically, in 

instances of abnormal lung sounds, the algorithm will adeptly classify them as either 

crackles or wheezing based on the recorded lung sound data. 
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1.4 Research Scopes 

1.4.1 Focus on respiratory sounds, specifically wheezing sounds, crackle sounds, 

and normal sounds. 

1.4.2 The dataset employed for the analysis of respiratory sounds in this study 

originates from collaborative efforts between two research teams in Portugal 

and Greece, known as the “Α Respiratory Sound Database for the 

Development of Automated Classification.” 

1.5 Education Advantages 

The primary aim of this study is to streamline the process of differentiating between 

normal and abnormal lung sounds, thereby reducing the subjective examination time 

required by medical personnel. Additionally, the study seeks to alleviate any bias 

associated with observer experience during the assessment of lung sounds. Additionally, 

the proposed methodology has the potential to evolve into a continuous monitoring device 

that utilizes chest wall-attached stethoscopes. This innovation obviates the necessity for 

medical staff to manually operate a stethoscope, which proves particularly advantageous 

in scenarios involving contagious diseases. By minimizing the proximity of medical 

personnel to patients, the risk of disease transmission is significantly mitigated, thereby 

enhancing overall safety measures. 

1.6 Research Methodologies 

1.6.1 Thesis Preparation: Define research question or problem, literature review, 

hypothesis or thesis statement, research methodology, proposal defense. 

1.6.2 Data Acquisition: Source of data, ethical considerations. 

1.6.3 Data Preparation: Cleaning and preprocessing, data formatting. 

1.6.4 Feature Extraction: Select relevant features, feature engineering. 

1.6.5 Training and Classification: Model selection, training, classification. 

1.6.6 Performance Evaluation Criteria: Metrics, evaluation plan. 

1.6.7 Evaluation, Publication, and Thesis Writing: Evaluation, publication, thesis 

writing, revisions, final defense.  
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1.7 Organization of Thesis 

 This thesis is meticulously organized into five comprehensive chapters, each 

contributing uniquely to the overarching exploration. The breakdown of chapters is as 

follows: Chapter 1 provides a contextual introduction, laying the groundwork for the 

ensuing exploration. It offers a concise overview of the research problem, the rationale 

for its significance, and an outline of the subsequent chapters. Chapter 2 delves into the 

foundational principles and theories intrinsic to the study. Specifically, it elucidates the 

theoretical underpinnings related to digital signal and image processing techniques. This 

chapter serves as a theoretical anchor, establishing the conceptual framework for the 

subsequent empirical investigations. Chapter 3 meticulously delineates the research 

designs employed and expounds upon the intricacies of the proposed methodology. It 

provides a detailed account of the chosen research designs, outlining the steps taken in 

the pursuit of the research objectives. This chapter serves as a bridge between theory and 

application, elucidating the strategies employed in the study. Chapter 4 dedicates to the 

comprehensive presentation and analysis of the experimental results derived from the 

application of the proposed methodology to a standard dataset. It provides insights into 

the empirical outcomes, facilitating a nuanced understanding of the method's 

effectiveness in practice. The final chapter, chapter 5, serves as the culminating section 

of the thesis. Herein, conclusions drawn from the entire research endeavor are presented. 

This chapter encapsulates the key findings, their implications, and potential avenues for 

future research. It provides a thoughtful synthesis of the entire study, underscoring the 

significance of the undertaken research in the broader academic landscape.  
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CHAPTER 2 

Background and Motivation 

In this section, the investigators elucidate the fundamental principles governing 

various types of digital filters, encompassing low-pass, high-pass, band-pass, and band-

stop filters, alongside the utilization of the Butterworth filter, which was employed in this 

research to attenuate heart sounds and seamlessly eliminate environmental noise. 

Additionally, logarithmic compression was employed to not only compress low-

amplitude signals, which typically lack informative content, but also amplify signals 

containing pertinent information, thereby enhancing the visibility of lung sound cycles in 

the time domain. Moreover, owing to the discrete nature of the digital data utilized in this 

study, the researchers employed the Discrete Fourier transform (DFT) to facilitate the 

conversion of signals from the time domain to the frequency domain. Furthermore, given 

the discrete nature of the digital data, a discrete-time STFT was employed to identify lung 

cycles. For the training phase of the study, the GoogLeNet model, a pre-trained CNNs 

tool, was utilized. Subsequently, performance evaluations were conducted utilizing a 

confusion matrix, which facilitated the extraction of key metrics including accuracy, 

precision, sensitivity, specificity, F1-score, and correlation.  

2.1 Digital Filters 

Digital filters play a crucial role in DSP [44, 45], serving two primary functions: 

signal separation and signal restoration. Signal separation becomes necessary when a 

signal becomes contaminated with interference, noise, or other signals. For instance, 

consider a scenario where a device measures the electrical activity of a baby's heart while 

in the womb; the raw signal is likely to be corrupted by the mother's breathing and 

heartbeat. In such cases, filters are employed to isolate these signals, enabling individual 

analysis. 

Signal restoration, on the other hand, is employed when a signal has undergone 

distortion. For instance, audio recordings made with subpar equipment may undergo 
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filtration to accurately represent the original sound. Similarly, deblurring images captured 

with improperly focused lenses or shaky cameras necessitates signal restoration. 

Both analog and digital filters can address these challenges, yet digital filters offer 

significantly superior performance. For instance, a low-pass digital filter may exhibit a 

gain of 1 0.0002 from Direct Current to 1000 Hz, with a gain of less than 0.0002 for 

frequencies above 1001 Hz, all within a narrow transition band of just 1 Hz. In contrast, 

analog filters are limited by factors such as the accuracy and stability of the electronic 

components, such as resistors and capacitors. 

In DSP, it is conventional to refer to a filter's input and output signals as being in 

the time domain, given that signals are typically sampled at regular time intervals. 

However, sampling can also occur in space, where readings are taken at equal spatial 

intervals. Despite this, time domain remains the most prevalent in DSP, with the term 

"time domain" often encompassing any domain in which the samples are collected. 

The most direct method of implementing a digital filter is by convolving the input 

signal with the filter's impulse response, allowing for the creation of all possible linear 

filters. Filter designers often refer to the impulse response as the "filter kernel" when 

employing it in this manner. 

2.1.1 Low-Pass filter 

A digital low-pass filter is a type of filter used in DSP to attenuate high-

frequency components of a signal while allowing low-frequency components 

to pass through. It's commonly used for smoothing signals, removing noise, 

and performing anti-aliasing in applications such as audio processing, 

communications, and control systems. The general equation [46] for a digital 

low-pass filter in the time domain: 

( ) ( )
1

0

N

k

k

y n b x n k
−

=

=  − , (1) 

where ( )y n  is the output signal at sample n , ( )x n  is the input signal at 

sample n , kb  are the filter coefficients, and N  is the filter order. 
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2.1.2 High-Pass, Band-Pass and Band-Stop Filters 

High-pass, band-pass, and band-stop filters are typically designed by 

initially creating a low-pass filter and then transforming it into the desired 

response. Consequently, discussions on filter design often focus on low-pass 

filters, with examples provided accordingly. The conversion from low-pass to 

high-pass filters can be accomplished through two methods: spectral 

inversion and spectral reversal, both of which are equally effective. 

2.1.3 Butterworth Filter 

The Butterworth filter [47], also known as a maximally flat magnitude 

filter, is a signal processing filter designed to maintain a frequency response 

that is as flat as possible within the passband. This filter was initially 

introduced by British engineer and physicist Stephen Butterworth in 1930 

through his paper titled "On the Theory of Filter Amplifiers." 

In his research, Butterworth demonstrated that by increasing the 

number of filter elements with appropriate values, progressively closer 

approximations to the desired response could be achieved. During that era, 

filters often exhibited significant ripple within the passband, and the selection 

of component values involved considerable interaction. Butterworth's key 

insight was the design of a low-pass filter with a normalized cutoff frequency 

of 1 radian per sec, resulting in a frequency response (gain: G ) expressed by 

the following equation: 

( )
2

1

1 n
G 


=

+
, (2) 

where   represents the angular frequency in radians per sec, and n  denotes 

the number of poles in the filter, which is equivalent to the number of reactive 

elements in a passive filter. When   equals 1, the amplitude response of this 

filter type in the passband is 
1

√2
, approximately 0.7071, corresponding to half 

power or −3 dB. 



 

26 

In his paper, Butterworth exclusively focused on filters with an even 

number of poles. It is possible that he was unaware of the potential to design 

such filters with an odd number of poles. Butterworth constructed his higher-

order filters by combining 2-pole filters separated by vacuum tube amplifiers. 

The frequency response plots of 2, 4, 6, 8, and 10 pole filters are represented 

as A, B, C, D, and E, respectively, in the original graph depicted in Figure 2.1 

[47] of his work. 

 

Figure 2.1 The frequency response plot [47] 

Butterworth's work further demonstrated that the fundamental low-pass 

filter could be adapted to provide low-pass, high-pass, band-pass, and band-

stop functionality. 

In this study, the second-order band-pass Butterworth filter was 

employed to attenuate frequencies below 200 Hz associated with heart sounds 

and frequencies above 2,000 Hz related to environmental noise, ensuring a 

smooth removal process. 

2.2 Logarithmic Compression 

In the realm of music signal processing [48], representations like spectrograms or 

chromograms encounter a challenge due to their values exhibiting a wide dynamic range. 
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This can lead to small yet significant values being overshadowed by larger ones. To 

address this issue, a dB scale is often employed to mitigate the discrepancy, aiming to 

reduce the gap between large and small values while accentuating the latter. Additionally, 

alternative logarithm-based functions may be applied, a process commonly known as 

logarithmic compression. 

Let   denote a real positive adjustable parameter (where higher   values result in 

more aggressive compression) and let y  represent the compression output function. It is 

defined by the following equation: 

( )log 1y x = + , (3) 

where x  is the input signal. In this study, logarithmic compression was employed not 

only to compress low amplitudes, which typically contain less information, but also to 

amplify the amplitudes containing significant information. By doing so, the lung sound 

cycle in the time domain could be observed more clearly, enhancing the discernibility of 

relevant features. 

2.3 Fourier Transform 

The Fourier transform is a fundamental analysis technique that decomposes a 

complex-valued function into its constituent frequencies and their corresponding 

amplitudes. Its inverse process, synthesis, reconstructs the original function from its 

transformed representation. In this study, given the digital nature of the data, characterized 

by discrete signals, the researchers utilized the DFT to transition the signal from the time 

domain to the frequency domain. 

The DFT operates by converting a finite sequence of equidistant samples of a 

function into an equivalent sequence of equidistant samples of the Discrete-Time Fourier 

transform (DTFT), a complex-valued function of frequency. The sampling interval for the 

DTFT is inversely proportional to the duration of the input sequence. An Inverse Discrete 

Fourier Transform (IDFT) represents a Fourier series, with the DTFT samples serving as 

coefficients of complex sinusoids at corresponding DTFT frequencies. Consequently, the 

IDFT yields the same sample values as the original input sequence. The DFT thus serves 

as a frequency domain representation of the original input sequence. If the original 
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sequence spans all non-zero values of a function, its DTFT is continuous (and periodic), 

and the DFT provides discrete samples of one cycle. Conversely, if the original sequence 

represents one cycle of a periodic function, the DFT offers all non-zero values of one 

DTFT cycle. 

The discrete FFT [46] transforms a sequence of N  complex numbers,  

{ nx } 0 1 2 1, , ,..., Nx x x x −= , into another sequence of complex numbers,  

{
kX } 0 1 2 1,X ,X ,...,XNX −= , as defined by the following equation: 

21

0

i knN

N
k n

n

X x e
−−

=

= , (4) 

where 0,1,2,..., 1k N= − . 

2.4 Short-Time Fourier Transform 

The STFT [46] is a Fourier-related technique employed to analyze the sinusoidal 

frequency and phase components of localized segments within a signal, capturing how 

they evolve over time. Practically, STFT computation involves dividing a longer duration 

signal into shorter segments of uniform length, upon which individual Fourier transforms 

are computed independently. This process unveils the Fourier spectrum associated with 

each short segment. Subsequently, the evolving spectra are typically plotted against time, 

forming a spectrogram or waterfall plot, commonly utilized in spectrum displays for 

Software-Defined Radio (SDR) applications. In this particular investigation, considering 

the discrete nature of the data, the researchers employed a discrete-time variant of the 

STFT to identify lung cycles. 

In the discrete-time scenario, the data to be transformed is segmented into frames 

or chunks, often with overlapping regions to mitigate artifacts at segment boundaries. 

Each segment undergoes Fourier transformation, resulting in a complex output that is 

aggregated into a matrix, documenting the magnitude and phase for every point across 

time and frequency. Mathematically, this process can be represented as follows: 
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( ) ( ) ( )
21

0

,
i knN

N

n

X j k x n w n j e
−−

=

= −  (5) 

where ( ),X j k  is the complex-valued output for each time-frequency bin, ( )x n  is 

the signal and ( )w n j−  is the structuring element function applied to each frame to 

control spectral leakage, and N  signifies the total number of samples in each frame. 

Likewise, in the majority of typical applications, the STFT is executed on a 

computer leveraging FFT algorithm. Consequently, both the variables involved, discreate 

and continuous, are discretized and quantized. This discretization process enables 

efficient computation of the STFT within the digital domain, facilitating analysis of 

signals in discrete time and frequency intervals. 

2.5 Classification 

In this research, the data comprises images representing lung cycles in the 

frequency domain. To analyze and classify these samples, the researchers employed the 

GoogLeNet model, which serves as a pre-trained CNNs model.  

GoogLeNet is a deep CNNs architecture consisting of 144 layers. It offers the 

capability to load pre-trained versions of the network that have been trained on large-

scale datasets such as ImageNet or Places365. The version trained on ImageNet is 

designed to classify images into 1000 distinct object categories, encompassing a diverse 

array of objects including various animals, household items, and natural elements. 

Conversely, the version trained on Places365 is similar in structure but specializes in 

categorizing images into 365 different place categories, spanning environments such as 

parks, streets, and interiors. 

Pretrained networks have acquired sophisticated feature representations through 

extensive training on vast collections of images. Notably, these networks accept images 

with an input size of 224 by 224 pixels. This standardized input size ensures compatibility 

with the pretrained models, facilitating seamless integration into the research workflow 

for image classification tasks. 
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GoogLeNet, also known as Inception V1, is a CNNs architecture developed by 

Google. It was the winner of the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) in 2014 [49]. GoogLeNet introduced several innovations to CNNs 

architecture, including the Inception module, which allows for efficient use of 

computational resources and deeper networks. 

In Figure 2.2 and layer details below are the brief overview of the main components 

and layers of the GoogLeNet architecture: 

 

Figure 2.2 The brief overview of GoogLeNet CNNs architecture 

1. Input Layer: This layer takes the input image, typically in RGB format, with a 

predefined size (224x224x3 pixels). 

2. Convolutional Layers: The network starts with several convolutional layers that 

perform feature extraction. These layers use filters (kernels) to convolve across 

the input image, extracting low-level features such as edges, corners, and 

textures. 

3. Inception Modules: The core innovation of GoogLeNet is the Inception module, 

which replaces the traditional single convolutional layer with a combination of 

parallel convolutional layers of different sizes (1x1, 3x3, 5x5), along with 

pooling operations. This allows the network to capture features at multiple 

scales efficiently. 
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4. Pooling Layers: Pooling layers, such as max pooling or average pooling, are 

used to down sample the feature maps obtained from the convolutional layers. 

They reduce the spatial dimensions of the feature maps while retaining 

important features. 

5. Fully Connected Layers: After several convolutional and pooling layers, the 

feature maps are flattened into a vector and passed through one or more fully 

connected layers. These layers perform high-level feature extraction and 

classification. They may also incorporate dropout regularization to prevent 

overfitting. 

6. Softmax Layer: The final layer of the network is a softmax layer, which 

produces the probability distribution over the output classes. It assigns a 

probability score to each class, indicating the likelihood that the input image 

belongs to that class. 

7. Auxiliary classifiers (Aux) are inserted into intermediate layers of the network 

and provide additional supervision signals to the network during training. They 

consist of convolutional and pooling layers followed by fully connected layers 

and a softmax output layer. The output of these auxiliary classifiers is used as 

an auxiliary loss function during training, in addition to the main loss function 

at the end of the network. 

Overall, GoogLeNet consists of many layers, including convolutional, pooling, and 

fully connected layers, organized into multiple Inception modules. This architecture 

allows for deeper networks while maintaining computational efficiency and achieving 

high accuracy in image classification tasks. 

In the evaluation of classifier performance, a crucial tool is the confusion matrix, 

denoted as ( )[ , i ]A A j= , as depicted in Table 1. Within this matrix, each element ( ), iA j  

represents the count of data points that belonged to the true class label i and were 

classified as belonging to class j . 
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Table 2.1 The elements of a confusion matrix A  

                Actual 

  Positive Negative 

Predicted 
Positive True Positive (TP ) False Positive ( FP ) 

Negative False Negative ( FN ) True Negative (TN ) 

From the confusion matrix A , various performance metrics can be directly derived, 

with accuracy being one of the fundamental measures. The properties of a classification 

system can be derived from the confusion matrix, enabling the calculation of important 

evaluation metrics. These metrics include accuracy, precision, sensitivity, specificity,  

F1-score, and correlation, each of which provides valuable insights into the performance 

of the classifier [50-54] using the following equation: 

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
 (6) 

TP
Precision

TP FP
=

+
 (7) 

TP
Sensitivity

TP FN
=

+
 (8) 

2TP
Specificity

TN FP
=

+
 (9) 

2
1

2

TP
F Score

TP FP FN
− =

+ +
 (10) 

1

e

e

Accuracy P
Correlation

P

−
=

−
, (11) 

where eP  is defined as 
( )( ) ( )( )

( )
2e

TP FP TP FN TN FN TN FP
P

TP TN FP FN

+ + + + +
=

+ + +
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CHAPTER 3 

Methods 

The experimental framework utilized in this study comprises five key phases including data 

acquisition, data preparation, classification, testing, and performance evaluation, as depicted in 

Figure 3.1. Each phase involves specific steps, which are outlined as follows: 

 

Figure 3.1 Framework block diagram of this study 

3.1 Data Acquisition 

We employed the "Α Respiratory Sound Database for the Development of Automated 

Classification" dataset [2], which encompasses 920 lung sound files collected from 126 subjects. 

The files exhibit diverse durations, spanning from 10 seconds to 90 seconds, resulting in a total 

recording duration of 5.5 hours. This dataset encompasses 6,898 respiratory cycles, with 1,864 

cycles containing crackle sounds, 886 cycles containing wheeze sounds, and 506 cycles containing 

both crackle and wheeze sounds, as illustrated in Table 3.1. The dataset incorporates recordings 

from individuals across various age demographics, encompassing children, adults, and the elderly. 

It comprises both clean respiratory sounds and noisy recordings, mimicking real-life conditions to 

provide a comprehensive representation of lung sound variations. 
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Table 3.1 Number of lung sound cycles 

Lung sounds Among of cycle 

Crackle 1,864 

Wheeze 886 

Both crackle and wheeze 506 

Normal 3,642 

Total 6,898 

The data collection utilized four recording devices: the AKG C417L Microphone, 3M 

Littmann Classic II SE, 3M Litmmann 3200 Electronic Stethoscope, and WelchAllyn Meditron 

Master Elite Electronic Stethoscope. These devices are capable of capturing sounds within the 

frequency range of 20 to 44,100 Hz. 

3.2 Data Processing 

3.2.1 Noise Removing 

In certain instances, heart sounds posed a significant interference, overshadowing 

the lung sounds and obscuring the breathing cycle, particularly given their higher 

frequency of occurrence. To mitigate this issue, a 5th order Butterworth bandpass filter 

was implemented with lower and upper cut-off frequencies set at 200 Hz and 2,000 Hz, 

respectively. This filter effectively attenuated the low-frequency components associated 

with heart sounds, as illustrated in Figure 3.2. Notably, lung sounds typically exhibit 

frequencies below 1600 Hz, while frequencies exceeding this range are often indicative 

of environmental noise. Furthermore, any speech artifacts within the breathing cycle, 

characterized by a mixture of low and high frequencies, were also removed to enhance 

the clarity of lung sound signals [55]. In addition, logarithmic compression was 

employed in this study not only to compress low-amplitude signals, which typically 

contain less relevant information, but also to amplify the amplitude of informative 

signals. As a result, the lung sound cycle in the time domain became more prominently 

visible, facilitating clearer analysis and interpretation of the data. 



 

35 

 

Figure 3.2 Top: Signal before using bandpass filter 

Bottom: Signal after using bandpass filter 

3.2.2 Short-Time Fourier Transform Processing 

Following the noise removal process, the signal was subjected to 

analysis in the time domain by computing its absolute value. 

Subsequently, thresholding was applied to isolate the breathing cycle. 

However, the resultant signal exhibited spikes, rendering the 

identification of the cycle challenging. To resolve this issue, we 

employed STFT according to Equation (5). STFT offers a frequency 

depiction of the signal across various time intervals [56]. This method 

enabled us to examine the prickly signal as frequencies within the cycle. 

The spectrogram of the signal representation of the cycle is typically 

more distinct than its time domain counterpart, as illustrated in Figures 

3.3 and 3.4. Both figures depict time on the X-axis in seconds, with the 

Y-axis of Figure 3.3 representing amplitude, while the Y-axis of Figure 

3.4 represents frequency in Hertz. 
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Figure 3.3 Time domain signal 

 

Figure 3.4 Frequency domain or spectrogram signal 

3.2.3 Cycle Detecting 

To identify the lung cycles from the 2-D STFT representation, each 

column of STFT signal was summed to get the 1-D graph. Then a 3rd order 

Gaussian filter with 21 pixels of window was applied to smooth the graph. 

Nevertheless, despite smoothing the graph, some jagged portions 

persisted. To address this issue, we applied a morphological opening 

operator to further refine the graph. This operator helped to eliminate small 

irregularities and smooth out the overall shape of the graph, resulting in a 

more accurate representation of the underlying data. The maximum and 

minimum point detection algorithms were applied in the graph to identify 

true peaks (inhalation or exhalation points) and true minimum points 

(covering the breathing cycle) on the graph in Figure 3.5. Following this, 

the processed graph was combined with the STFT representation to 
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pinpoint the initiation and termination points of the breathing cycles, as 

depicted in Figure 3.6. This integration facilitated the accurate 

identification of the beginning and end of each respiratory cycle, thereby 

enabling the segmentation of the lung sound signals into individual breath 

cycles for further analysis. Finally, the first and the last cycle were 

eliminated to prevent a non-cycle. The steps to get the breathing cycles 

will show an example below. 

 

Figure 3.5 The graph represents the smoothed and detected cycle points 

 

Figure 3.6 The merged graph depicts the smoothed and detected cycles in the frequency 

domain, alongside the frequency domain signal 

For example, case number 104 (1) employed a 5th order Butterworth bandpass 

filter within the frequency range of 200 to 2,000 Hz and logarithmic compression 

normalization also be applied, yielding outcomes depicted in Figure 3.7. Subsequently, it 

will undergo STFT with the outcomes depicted in Figure 3.8. 
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Figure 3.7 Top: Original signal 

Bottom: Signal after applying bandpass filter and logarithmic compression 

normalization 

 

Figure 3.8 Signal after applying STFT 

Afterward, the magnitude of spectrogram in each column was summed to obtain 

the magnitude of spectrogram graph shown in Figure 3.9 and apply smoothing to the 

graph using a 3rd order Gaussian filter with 21 pixels of window. Subsequently, we 



 

39 

performed an opening operation to fill in any small holes and enhance the smoothness of 

the orange graph. The refined results are illustrated in Figure 3.10. 

 

Figure 3.9 Graph summation of each column of its STFT 

 

Figure 3.10 Smoothed graph (orange line) 

Next, the smoothed graph was identified the maximum and minimum points. The 

highest points correspond to each cycle of inhalation and exhalation, with some instances 

featuring both inhalation and exhalation, while others have only one phase. This pattern 

is depicted in Figure 3.11. Subsequently, we established a prominence line (vertical line) 

as depicted in Figure 3.12 and determined peak widths at 50% of the prominence. 

Following this, the points with excessively long or oscillating peak widths are removed 

and generated a new width line at 88%, as illustrated in Figure 3.13. 
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Figure 3.11 Smoothed graph with all peaks and all minimum points 

 

Figure 3.12 Smoothed graph with all peaks, all minimum points, and all prominence 

lines 

 

Figure 3.13 Smoothed graph with truth peak of each cycle, all minimum points, and 

truth peak prominence lines 
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Subsequently, all peak points within the range of the peak widths were eliminated 

to isolate the most maximum point in each segment of the graph. Following this, the 

minimum points were retained that were closest to the prominence before and after, 

resulting in Figure 3.14. 

 

Figure 3.14 Smoothed graph with truth peak, truth peak prominence line and minimum 

points as the edges of breathing cycle of each cycle 

Then, the graph was proceeded to compare the length of time from each nearest 

minimum point. If the time interval was similar to the duration of one breath taken by the 

patient, we retained it and proceeded to examine the next point. However, if the time 

interval was less than 25 percent, we incremented the count by one more point, totaling 

three points. This adjustment was made because the second point might only represent 

the transition between inhaling and exhaling. Consequently, the cycle of inhalation and 

exhalation could be identified from the first lowest point to the next, constituting the first 

round of breathing in and out. The subsequent points, from the second to the third, 

represented subsequent rounds. This process continued until all points were examined. 

Finally, we superimposed these findings onto the spectrogram of the signal itself, as 

depicted in Figure 3.15. 
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Figure 3.15 Merged graph of cycle detection and its STFT 

Lastly, the breathing cycles were segmented at the lowest point to isolate each 

individual breathing cycle and eliminated the first and the last cycles for preventing the 

non-complete cycles of lung sounds, resulting in the depiction shown in Figure 3.16. 

 

Figure 3.16 Each breathing cycle  
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3.3 Classification 

After getting all samples of 5,076 cycles that were crackle of 1,908 cycles, wheeze 

of 780 cycles, and normal of 2,388 cycles from this cycle detection technique. For each 

class, 80% of the cycle sound types were randomly used for training (1,590 of crackle, 

650 of wheeze, and 1,990 of normal) as show in Table 3.2. A pretrained GoogLeNet model 

(one of pretrained CNNs) was employed in this study. The GoogLeNet model received 

STFT images as inputs, which covered the breathing cycle detected in the previous step. 

The GoogLeNet model was configured to produce outputs corresponding to four distinct 

classes: 1) crackle versus wheeze, 2) crackle versus normal, 3) wheeze versus normal, 

and 4) a combination of all three (crackle versus wheeze versus normal). The number of 

epochs and the learning rate were set to 60 and 0.001, respectively. The remaining 20% 

of the data were reserved for testing the algorithm model specific to each class. 

Table 3.2 Number of samples for training and testing 

Lung sounds 80 percent 20 percent 

Crackle 1,590 318 

Wheeze 650 130 

Normal 1,990 398 

Total 4,230 846 

3.4 Performance Evaluation 

After the samples underwent classification by the GoogLeNet model, the 

subsequent step involved the calculation of performance evaluation metrics, which 

included True Positives, True Negatives, False Positives, and False Negatives values. 

These metrics were then utilized to compute several key performance indicators, 

including accuracy, precision, sensitivity, specificity, F1-Score, and correlation. These 

calculations were performed using Equations (6) through (11), respectively, to perform 

the necessary calculations, facilitating the assessment of the model's capability to 

differentiate between distinct categories of lung sounds.  
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3.4.1 Accuracy 

Accuracy is a performance metric that measures the proportion of 

correctly classified instances out of the total number of instances evaluated 

by a predictive model. It provides an overall assessment of the model's 

correctness and is calculated by dividing the number of correctly predicted 

instances by the total number of instances. Accuracy is particularly useful 

when the classes in the dataset are balanced, but it may not provide an 

accurate representation of performance in the presence of class imbalance. 

3.4.2 Precision 

Precision is a performance metric that evaluates the accuracy of positive 

predictions made by a model. It measures the proportion of true positive 

predictions (correctly predicted positive instances) out of all positive 

predictions made by the model, including both true positives and false 

positives. Precision focuses on the quality of positive predictions and is 

calculated by dividing the number of true positives by the sum of true 

positives and false positives. 

3.4.3 Sensitivity 

Sensitivity, also known as recall or true positive rate, assesses the ability 

of a model to correctly identify positive instances from the total number of 

actual positive instances in the dataset. It measures the proportion of true 

positive predictions out of all actual positive instances and is calculated by 

dividing the number of true positives by the sum of true positives and false 

negatives. Sensitivity is crucial in scenarios where correctly identifying 

positive instances is of utmost importance, such as medical diagnostics. 

3.4.4 F1-Score 

The F1-Score is a performance metric that provides a balanced measure 

of a model's precision and sensitivity. It is the harmonic mean of precision 

and sensitivity, calculated by taking the reciprocal of the average of the 

reciprocals of precision and sensitivity. The F1-Score considers both false 
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positives and false negatives and is especially useful when there is an 

imbalance between positive and negative instances in the dataset. 

3.4.5 Correlation 

Correlation is a statistical measure that quantifies the strength and 

direction of the linear relationship between two variables. It ranges from -1 

to 1, where 1 indicates a perfect positive linear relationship, -1 indicates a 

perfect negative linear relationship, and 0 indicates no linear relationship. 

Correlation is commonly used to assess the association between variables and 

is particularly useful in identifying patterns and dependencies in data analysis 

and predictive modeling.  
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CHAPTER 4 

Experimental Results and Discussions 

4.1 Experimental Results 

To offer a thorough assessment of the results obtained from the test data, the 

confusion matrices for all four classes, namely "crackle versus wheeze versus normal," 

"crackle versus wheeze," "crackle versus normal," and "wheeze versus normal," are 

provided in Tables 4.1 to 4.4, respectively. Additionally, Table 4.5 presents the 

performance evaluation metrics for each case, encompassing accuracy, precision, 

sensitivity, F1-score, and correlation. 

Table 4.1 Confusion matrix of crackle versus wheeze versus normal 

  Actual 

  Crackle Wheeze Normal 

Predicted 

Crackle 217 11 157 

Wheeze 19 82 57 

Normal 82 37 184 

Table 4.2 Confusion matrix of crackle versus wheeze 

      Actual 

  Crackle Wheeze 

Predicted 
Crackle 283 31 

Wheeze 35 99 

Table 4.3 Confusion matrix of crackle versus normal 

      Actual 

  Crackle Normal 

Predicted 
Crackle 210 157 

Normal 108 241 
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Table 4.4 Confusion matrix of wheeze versus normal 

    Actual 

  Wheeze Normal 

Predicted 
Wheeze 89 90 

Normal 41 308 

Table 4.5 Evaluation of each category's performance includes comparisons between 

crackle versus wheeze versus normal, crackle versus wheeze, crackle versus normal, 

and wheeze versus normal lung sounds classifications 

Classes 

Crackle versus 

wheeze versus 

normal 

Crackle versus 

wheeze 

Crackle versus 

normal 

Wheeze versus 

normal 

Accuracy 57.09% 85.27% 62.99% 75.19% 

Precision 58.28% 90.13% 57.22% 49.72% 

Sensitivity 66.74% 88.99% 66.04% 68.46% 

Specificity 46.23% 76.15% 60.55% 77.39% 

F1-Score 62.23% 89.56% 61.31% 57.61% 

Correlation 0.13 0.65 0.26 0.41 

Table 4.5 reveals that the crackle versus wheeze classification achieved the highest 

metrics across all tested scenarios, with accuracy at 85.27%, precision at 90.13%, 

sensitivity at 88.99%, F1-score at 89.56%, and correlation at 0.65. Conversely, the wheeze 

versus normal classification displayed the highest specificity at 77.39%. Notably, 

distinguishing crackle sounds proved more feasible compared to normal sounds, resulting 

in relatively lower performance in the crackle versus normal classification. This challenge 

likely stems from the overlapping frequency characteristics between crackles and normal 

lung sounds, posing difficulty in distinguishing both classes using STFT features. 

Moreover, the algorithm exhibited the robust performance in distinguishing 

between crackles, wheezes, and normal lung sounds, even in challenging classification 

scenarios involving multiple sound categories. 
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Table 4.6 Accuracy of each case in class of crackle versus wheeze versus normal 

Cases TP FP FN TN Accuracy 

Crackle 217 168 101 360 68.20% 

Wheeze 82 76 48 640 85.34% 

Normal 184 119 214 329 60.64% 

Furthermore, Table 4.6 presents the individual accuracy of crackle sounds, wheeze 

sounds, and normal sounds for the classification scenario of crackle versus wheeze versus 

normal model belonging to Table 4.1 by 68.20%, 85.34%, and 60.64%, respectively. 

Table 4.7 Confusion matrix of crackle versus wheeze versus normal of pretrained model 

  Actual 

  Crackle Wheeze Normal 

Predicted 

Crackle 0 0 0 

Wheeze 0 1 0 

Normal 327 149 477 

From Table 4.7 presents the confusion matrix for the class of crackle versus wheeze 

versus normal, depicting the performance of the original pretrained model (the model 

prior to learning). The matrix illustrates that the model predominantly classified the data 

into the normal case across all possible scenarios. This contrasts with the findings 

observed in Table 4.1, which showcases the confusion matrix for the same class but with 

the pretrained model (the model after learning). The disparity between the two matrices 

underscores the influence of model learning on prediction outcomes, highlighting the 

significance of the learning process in shaping the model's predictive capabilities. 

4.2 Discussions 

The findings of this study illuminate the promising potential of automated lung 

sound analysis in reshaping respiratory healthcare. By amalgamating sophisticated signal 

processing techniques with cutting-edge machine learning algorithms, the proposed 

methodology provides a dependable and efficient means of identifying abnormal lung 

sounds. 
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The impressive accuracy rates achieved by the algorithm underscore its clinical 

significance in supporting healthcare practitioners with the diagnosis and monitoring of 

respiratory conditions. Accurately classifying abnormal lung sounds, including crackles 

and wheezes, has the potential to greatly improve diagnostic precision and streamline 

treatment decision-making procedures. 

However, the study also uncovers several challenges and limitations that merit 

attention. The interference of heart sounds emerges as a significant hurdle in accurately 

isolating lung sounds, necessitating the development of more advanced noise removal 

techniques. Additionally, issues concerning precise cycle detection and differentiation 

between similar sound patterns emphasize the need for continual methodological 

refinement. 

Looking ahead, future research endeavors could concentrate on tackling these 

challenges through the exploration of innovative noise reduction strategies and the 

enhancement of algorithmic approaches for sound classification. Furthermore, integrating 

real-time monitoring capabilities into portable medical devices harbors immense potential 

for enhancing respiratory healthcare delivery, enabling timely interventions and improved 

patient outcomes. 

We faced challenges in addressing noise interference, particularly from heart 

sounds. The use of a high-pass filter to eliminate heart sound noise inadvertently led to 

the removal of low-frequency lung sound information, as both heart and lung sounds 

share overlapping frequency ranges. Additionally, the maximum frequency of heart 

sounds varied across different locations of the lung lobes, complicating the noise removal 

process. These complexities highlight the difficulty in effectively eliminating heart sound 

noise while preserving pertinent lung sound information [15]. Achieving accurate 

differentiation between the two types of sounds based solely on frequency cutoff proved 

challenging due to these factors. 

Another issue raised concerns the algorithm's accuracy in counting breathing 

cycles. Some cycles were incorrectly counted as two separate cycles instead of one, while 

others lacked the inclusion of inspiration and expiration phases at the beginning and end, 

respectively, as indicated by the ground truth data. These observations highlight 
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limitations in the algorithm's capability to accurately detect and count cycles. Moreover, 

the presence of prolonged coughing sounds, surpassing the typical duration of breathing 

cycles, posed additional challenges in precise cycle counting. 

These challenges and limitations suggest potential areas for methodological 

refinement. For example, investigating alternative noise reduction techniques tailored to 

address heart sound interference and enhancing algorithms for accurate cycle detection 

could improve the overall performance of the classification system. This would enhance 

its reliability in effectively distinguishing between various categories of lung sounds. 

Moving forward, this study compares crackle vs wheeze lung sounds, focusing on 

predicting cases where the input consists solely of crackle or wheezing sounds. Similarly, 

comparisons between crackle vs normal sound and wheeze vs normal sound are 

conducted to predict only two possible cases learned by the system. When confronted 

with lung sound inputs outside its training data, the system predicts based solely on the 

learned cases. However, attempts to train the model with crackle vs wheeze vs normal 

cases yielded the lowest performance, suggesting diminishing returns with the addition 

of more cases. Furthermore, it was found that the STFT may not provide sufficient 

features for identifying these lung sounds. 

Several suggestions arise from these findings. Firstly, utilizing a new and improved 

dataset is recommended due to various limitations in the current dataset.  

1) Some sample files contain various types of noise, including coughing sounds, 

medical device noise, speech noise, electronic noise, etc., as illustrated in 

Figure 4.1.  

2) Certain samples contain heart sounds rather than lung sounds, which 

predominantly occur in the lower left lobe of the lungs, as depicted in Figure 

4.2. 
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Figure 4.1 Speech noise signal 

 

Figure 4.2 Heart sound signal 
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3) In some parts of certain sample files, there is no discernible sound, yet they 

are labeled as crackle, wheeze, both (crackle and wheeze), or normal lung 

sound, as shown in Figure 4.3. 

4) The dataset is collected from four different types of recording devices (AKG 

C417L Microphone, 3M Littmann Classic II SE Stethoscope, 3M Littmann 

3200 Electronic Stethoscope, and WelchAllyn Meditron Master Elite 

Electronic Stethoscope) and two different modes (sequential/single channel 

and simultaneous/multichannel), potentially leading to unequal resolution 

and information within the data. 

5) In clinical settings, crackle lung sounds can be further divided into fine 

crepitation and coarse crepitation, which should also be labeled to improve 

the prediction system. 

 

Figure 4.3 No sound information part 

Finally, considering the characteristics of the data, alternative classification 

techniques such as Long Short-Term Memory (LSTM), SVM, RNN, PCA, among others, 

designed for one-dimensional signal classification, may be more appropriate than CNNs, 
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which are typically used for two-dimensional signal or image classification. Additionally, 

in this thesis, during the training step, the data were trained only once for each class. It 

could be advantageous to employ k-fold cross-validation instead of one time trained. 

In summary, while the proposed algorithm demonstrates impressive performance in 

automating abnormal lung sound identification, continued research and development 

efforts are essential to further enhance its reliability and efficacy in clinical settings. By 

leveraging the synergies between signal processing and machine learning, the field of 

respiratory medicine stands poised to benefit from transformative advancements in 

diagnostic technologies, ultimately improving patient care and outcomes.  
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CHAPTER 5 

Conclusion 

This study aims to fulfill the pressing need for automated detection of abnormal 

lung sounds by employing a novel fusion of signal processing and machine learning 

methodologies. Through the development of a robust algorithm capable of accurately 

discerning between normal and abnormal breathing sounds, specifically targeting 

crackles and wheezes, this research marks a significant advancement in respiratory 

medicine diagnostics. 

The proposed methodology initiates with the acquisition of lung sound data from a 

meticulously curated dataset, encompassing a diverse range of recordings spanning 

various respiratory conditions and demographic profiles. Subsequent data processing 

involves meticulous noise removal, with particular emphasis on eliminating heart sounds, 

followed by the transformation of signals into the frequency domain utilizing STFT. This 

process facilitates the identification and segmentation of breath cycles, laying the 

groundwork for precise classification. 

Harnessing the power of CNNs, specifically leveraging the GoogLeNet model, 

enables robust classification of abnormal lung sounds based on extracted features from 

STFT images. The algorithm demonstrates remarkable accuracy rates across multiple 

classification scenarios, notably excelling in differentiating between crackles and 

wheezes. These findings underscore the effectiveness of the proposed approach in 

facilitating precise diagnosis and monitoring of respiratory conditions. 

However, the study also sheds light on several challenges and limitations that 

warrant further investigation and refinement. Addressing issues such as noise 

interference, precise cycle detection, and differentiation between similar sound patterns 

presents avenues for methodological enhancement. Investigating alternative methods for 

noise reduction and advancing algorithmic sophistication have the potential to elevate the 

overall performance and dependability of the classification system. 
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Looking ahead, the research holds promising implications for the development of a 

portable medical device capable of real-time lung sound analysis. Such a device has the 

potential to revolutionize respiratory healthcare by providing immediate access to 

diagnostic insights, thereby facilitating timely interventions and improving patient 

outcomes. Moreover, the integration of advanced technologies into medical practice 

underscores the transformative role of interdisciplinary research in advancing human 

health and well-being. 

In conclusion, this study represents a significant stride towards the automation of 

abnormal lung sound identification, offering valuable contributions to the field of 

respiratory medicine and paving the way for future innovations in healthcare diagnostics 

and monitoring.  
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