ชื่อเรื่องวิทยานิพนธ์ เงื่อนไขการมีเสถียรภาพเชิงเส้นกำกับที่ขึ้นกับตัวหน่วงของระบบเป็นกลางไม่แน่นอน

ผู้เขียน นางสาววาจารี วีระ
ปริญญา วิทยาศาสตรมหาบัณฑิต (คณิตศาสตร์ประยุกต์)
อาจารย์ที่ปรึกษาวิทยานิพนธ์ รศ.ดร.ปิยะพงศ์ เนียมทรัพย์

บทคัดย่อ

ในวิทยานิพนธ์นี้ เราได้ศึกษาเงื่อนไขการมีเสถียรภาพเชิงเส้นกำกับที่ขึ้นกับตัวหน่วงของระบบเป็นกลางไม่แน่นอนในรูป

\[
\begin{align*}
\dot{x}(t) - C \dot{x}(t - d) &= (A + \Delta A(t))x(t) + (B + \Delta B(t))x(t - \tau(t)) \\
x(t) &= \phi(t), t \in [-h, 0]
\end{align*}
\]

โดยที่ \(x(t) \in \mathbb{R}^n\) เป็นเวกเตอร์ \(A, B \in \mathbb{R}^{n \times n}\) เป็นเมทริกซ์คงตัว \(\Delta A(t), \Delta B(t)\) เป็นเมทริกซ์ไม่แน่นอนซึ่ง

\[
[\Delta A(t) \quad \Delta B(t)] = EF(t)[G \quad G_1]
\]

โดยที่ \(E, G\) และ \(G_1\) เป็นเมทริกซ์คงตัวตัวหารคงตัว และ \(F(t)\) เป็นเมทริกซ์ที่ไม่ทราบตัวค่าสอดคล้องกับเงื่อนไข

\[
F^T(t)F(t) \leq I, \forall t \geq 0
\]

โดยที่ \(I\) คือเมทริกซ์เอกลักษณ์ \(\phi(t)\) เป็นเงื่อนไขเริ่มต้นของระบบสมการ (1) \(\tau(t)\) เป็นตัวหน่วงที่แน่นอนที่เป็นไปตามเงื่อนไขต่อเนื่องที่สอดคล้องกับ

\[
0 \leq \tau_m \leq \tau(t) \leq \tau_M
\]

โดยที่ \(\tau_m\) และ \(\tau_M\) เป็นตัวต่ำและ \(d\) เป็นตัวหน่วงต่ำตัวใดๆที่ \(d \geq 0\)

เราได้เงื่อนไขเพียงพอสำหรับการมีเสถียรภาพเชิงเส้นที่ขึ้นกับตัวหน่วงของระบบเป็นกลางไม่แน่นอนของผลเฉลยพื้นฐานสำหรับระบบสมการ (1) โดยใช้ฟังก์ชันไลปูนอฟอสมการเมทริกซ์เชิงเส้น พร้อมทั้งยังก็ตัวอย่างการจำลองเชิงตัวเลข
ABSTRACT

In this thesis, we study the delay-dependent criterion for asymptotic stability for uncertain neutral system described by

\[\dot{x}(t) - C\dot{x}(t-d) = (A + \Delta A(t))x(t) + (B + \Delta B(t))x(t - \tau(t)) \]
\[x(t) = \phi(t), t \in [-h, 0] \quad (1) \]

where \(x(t) \in \mathbb{R}^n \) is the state vector, \(A, B \in \mathbb{R}^n \) are constant matrices, \(\Delta A(t), \Delta B(t) \) are uncertainty matrices which are of the form

\[[\Delta A(t) \quad \Delta B(t)] = EF(t)[G \quad G_1] \quad (2) \]

where \(E, G \) and \(G_1 \) are known constant matrices and \(F(t) \) are unknown matrices which satisfy

\[F^T(t)F(t) \leq I, \forall(t) \geq 0 \quad (3) \]

where \(I \) is the identity matrix of appropriate dimension, \(\phi(t) \) is the initial condition of equation (1), \(\tau(t) \) is a continuous time-varying delay function satisfying

\[0 \leq \tau_m \leq \tau(t) \leq \tau_M \quad (4) \]

where \(\tau_m \) and \(\tau_M \) are constants and \(d \) is a constant delay, \(d \geq 0 \).
We obtain some new sufficient conditions for determining delay-dependent criterion for asymptotic stability for uncertain neutral system of the zero solution for system (1) by using the Lyapunov function and linear matrix inequality technique. Numerical simulations are given to illustrate the effectiveness of our theoretical results.