ชื่อเรื่องวิทยานิพนธ์

การสร้างเครื่องวัดปริมาณแอลกอฮอล์ในลมหายใจ โดยใช้ดีบุกออกไซด์เป็นตัวตรวจรับรู้แก๊ส

ผู้เขียน

นายปียชนน์ เกษสุวรรณ

ปริญญา

วิทยาศาสตรมหาบัณฑิต(ฟิสิกส์ประยุกต์)

อาจารย์ที่ปรึกษาวิทยานิพนธ์

รศ.คร. นิกร มังกรทอง

บทคัดย่อ

ในงานวิจัยนี้ได้สร้างเครื่องวัดปริมาณแอลกอฮอล์ในลมหายใจแบบแสดงผลด้วยตัวเลข ใน ระดับการตรวจเพื่อคัดกรอง โดยใช้ตัวตรวจวัดแบบสารกึ่งตัวนำดีบุกออกไซด์ TGS 822 ของบริษัท FIGARO ซึ่งควบคุมการตรวจวัดและการประมวลผลด้วยใมโครคอนโทรเลอร์ 68HC11 ของบริษัท MOTOROLA โดยจำลอง ใอแอลกอฮอล์ด้วย Alcohol simulator model 34 C ของบริษัท GUTH LABORATORIES ที่ระดับความเข้มข้นใอแอลกอฮอล์ 20, 50, 80, 110 และ 150 มิลลิกรัม เมื่อหาความสัมพันธ์ระหว่างค่าแรงคันไฟฟ้า(x) ที่ตรวจวัดได้จากแก๊สเซ็นเซอร์กับ เปอร์เซ็นต์ ใด้ว่า $y = 13.941x^2 - 0.4382x + 5.0791$ โดยมีสัมประสิทธิ์สห ความเข้มข้น ใอแอลกอฮอล์(v) สัมพันธ์เท่ากับ 0.9995 แล้วสอบเทียบกับ Alcohol simulator Model 34 C อีกครั้ง ด้วย สารละลายแอลกอฮอล์ที่ผ่านการวัดความเข้มข้นด้วย Gas chromatography Model Star 3400 CX ของบริษัท Varian, Inc. ที่ความเข้มข้นใอแอลกอฮอล์ 19.98, 46.86, 49.13, 107.5 และ 137.56 มิลลิกรัมเปอร์เซ็นต์ โดยตรวจวัดความเข้มข้นละ 5 ตัวอย่างการทดลอง พบว่าค่าความเข้มข้นใอ แอลกอฮอล์เฉลี่ยที่ตรวจวัดได้ คือ 20.64, 47.50, 48.10, 105.84 และ 135.32 มิลลิกรัมเปอร์เซ็นต์ โดยมีส่วนเบี่ยงเบนมาตรฐาน 0.67, 1.54, 2.05, 2.83 และ 3.91 ตามลำดับ จึงปรับความสัมพันธ์ ระหว่างค่าแรงดันไฟฟ้าที่ตรวจวัดได้กับกวามเข้มข้นไอแอลกอฮอล์มาตรฐานเหล่านี้อีกครั้ง ได้ว่า $y=14.089x^2+0.4211x+3.3219$ โดยมีสัมประสิทธิ์สหสัมพันธ์เท่ากับ 0.9999 แล้วตรวจวัดด้วย

สารละลายแอลกอฮอล์ที่วัดความเข้มข้นด้วย Gas chromatography ว่ามีความเข้มข้นใอ แอลกอฮอล์ 51.3 มิลลิกรัมเปอร์เซ็นต์ จำนวน 15 ตัวอย่างการทดลอง พบว่าค่าความเข้มข้นใอ แอลกอฮอล์เฉลี่ยคือ 51.54 มิลลิกรัมเปอร์เซ็นต์ โดยมีส่วนเบี่ยงเบนมาตรฐาน 1.72 คิดเป็น สัมประสิทธิ์ความแปรผัน 3.3%

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Thesis Title

Construction of a Breath Alcohol Using

Tin Oxide as a Gas Sensor

Author

Mr.Piyachon ketsuwan

Degree

Master of Science (Applied Physics)

Thesis Advisor

Assoc.Prof.Dr.Nikorn

Mangkorntong

ABSTRACT

In this work a digital breath alcohol analyzer was constructed for screening test by using tin dioxide (SnO₂) semiconductor gas sensor TGS 822, manufactured by Figaro Engineering. The signal from the sensor was controlled and processed by a micro-controller 68HC11 of MOTOROLA in conjunction with an alcohol simulator model 34C of GUTH LABORATORIES for alcohol vapor concentrations of 20 mg%, 50 mg%, 80 mg%, 110 mg%, 150 mg%), respectively. 5 samples were employed for each concentration. The relation between reading out voltage(x) from gas sensor and alcohol vapor concentration (y) was $y=13.941x^2-0.4382x+5.0791$ with a coefficient of correlation of 0.9995. To obtain a more precise correlation, another solution confirmed by gas chromatography with equivalent set of standard concentration of 19.98 mg%, 46.86 mg%, 107.5 mg%, 137.56 mg%, respectively, were employed. It was found that the average of alcohol vapor concentration were 20.64 mg%, 47.50 mg%, 48.10 mg%, 105.84 mg%, 135.32 mg%, respectively, with the standard deviation of 0.67, 1.54, 2.05, 2.83, 3.91, respectively. The relation between reading out voltage(x) and alcohol vapor concentration (y) was found to be $y=14.089x^2+0.4211x+3.3219$ with a coefficient of correlation of 0.9999. Using the latest correlation with 15 samples of alcohol vapor concentration of 51.3 mg% (confirmed by gas chromatography) was employed for a checking. It was observed that the average of alcohol vapor concentration was 51.54 with the standard deviation of 1.72 which coefficient of variation about 3.3%.